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Abstract

In this report we consider an electromagnetic interrogation technique for identifying the
dielectric parameters of a Debye medium in two and three dimensions. These parameters
include the dielectric permittivity, the conductivity and the relaxation time of the Debye
medium. In this technique a travelling acoustic pressure wave that is generated in the Debye
medium is used as a virtual reflector for an interrogating microwave electromagnetic pulse
that is generated in free space and impinges on a planar interface that separates air and the
Debye medium. The reflections of the microwave pulse from the air-Debye interface and from
the acoustic pressure wave are recorded at an antenna that is located in air. These reflections
comprise the data that is used in an inverse problem to estimate the dielectric parameters
of the Debye medium. We assume that the dielectric parameters of the Debye medium
are locally pressure dependent. A model for acoustic pressure dependence of the material
constitutive parameters in Maxwell’s equations is presented. As a first approximation, we
assume that the Debye dielectric parameters are affine functions of pressure. We present a
time domain formulation that is solved using finite differences in time and in space using the
finite difference time domain method (FDTD). Perfectly matched layer (PML) absorbing
boundary conditions are used to absorb outgoing waves at the finite boundaries of the
computational domain and prevent excessive spurious reflections from reentering the domain
and contaminating the data that is collected at the antenna placed in air.

Using the method of least squares for the parameter identification problem we solve an

inverse problem by using two different algorithms; the gradient based Levenberg-Marquardt

method, and the gradient free, simplex based Nelder-Mead method. We solve inverse prob-

lems to construct estimates for two or more dielectric parameters. Finally we use statistical

error analysis to construct confidence intervals for all the presented estimates. These con-

fidence intervals are a probabilistic statement about the procedure that we have used to

construct estimates of the various parameters. Thus we naturally combine the deterministic

nature of our problem with uncertainty aspects of estimates.
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1 Introduction

The study of transient electromagetic waves in lossy dispersive dielectrics is of great
interest due to the numerous applications of this subject to many different problems
[AMP94, APM89]. These include microwave imaging for medical applications in
which one seeks to investigate the internal structure of an object (the human body)
by means of electromagnetic fields at microwave frequencies (300 MHz - 30 GHz). This
is done for example, to detect cancer or other anomalies by studying changes in the
electrical properties of tissues [FMS03]. These include the dielectric properties such
as permittivity, the conductivity and the relaxation time for the Debye medium. One
generates the electrical property distributions in the body (Microwave maps) with the
hope that such properties of different bodily tissues are related to their physiological
state. With such noninvasive interrogating techniques one can study properties and
defects in biological tissues with very little discomfort to the subjects. Other potential
applications for such interrogation techniques are nondestructive damage detection
in aircraft and spacecraft where very high frequency electromagnetic pulses can be
used to detect the location and width of any cracks that may be present [BGW03].
Additional applications are found in mine, ordinance and camouflage surveillance,
and subsurface and atmospheric environmental modeling [BBL00].

Another important technique employed in noninvasive interrogation of objects is
the use of ultrasonic waves in industrial and medical applications. The interaction of
electromagnetic and sound waves in matter has been widely studied in acoustooptics
[And67, Kor97]. Brillouin first showed that electromagnetic and sound waves can
interact in a medium and influence each others propagation dynamics [Bri60]. The
response of the atomic electrons in a material medium to the applied electric field
results in a polarization of the material with a resulting index of refraction that is a
function of the density in the material. Consequently, the material density fluctua-
tions produced by a sound wave induce perturbations in the index of refraction. Thus
an electromagnetic wave transmitted through the medium will be modulated by the
sound wave, and scattering and reflection will occur. Conversely, a spatial variation
of the electromagnetic field intensity and the corresponding electromagnetic stress
lead to a volume force distribution in the medium. This is called electrostriction, and
can lead to sound generation. This mutual interaction between light and sound may
also lead to instabilities and wave amplification [MI68].

The work in this paper is based on ideas underlying the techniques formulated in
[BBL00] and [ABR02]. In [BBL00], the authors present an electromagnetic interro-
gation technique for general dispersive media backed by either a perfect conducting
wall to reflect the electromagnetic waves, or by using standing acoustic waves as
virtual reflectors. In [ABR02], this work was extended to using travelling waves as
acoustic reflectors. In both cases the techniques were demonstrated in one dimension
by assuming plane electromagnetic waves impinging at normal incidence on slabs of
dispersive media. In [BB03] a multidimensional version of the electromagnetic in-
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terrogation problem is presented for dispersive media backed by perfect conductor
walls and the FDTD method is utilized [Taf95, Taf98]. However, as we have noted
above, the object of interrogation may not be backed by perfect conductor walls in
many important applications, and hence one needs to have another type of accessible
interface which will reflect the propagating electromagnetic pulses. It is therefore
of great importance to ascertain (computationally and experimentally) whether the
interrogation ideas of [ABR02] using acoustic pressure waves as virtual reflectors can
be effective in multidimensional settings. The goal of this paper is the investigation
of computational and statistical aspects of this methodology. At present we are also
trying to validate these proposed techniques by testing the ideas in this paper in an
experimental setup. Our group has built an antenna that we are using to study the
acoustooptical interaction in agar-agar in which the sound waves are produced by
means of a transducer [ABK04]. In such a setup, as well as in many applications one
cannot assume normally incident plane waves impinging on the agar, and hence one
needs to consider the more general case of oblique incidence. This motivates the study
of an electromagnetic interrogation technique using the acoustooptical interaction to
study dielectic properties of dispersive media in multidimensions.

We begin with Maxwell’s equations for a first order dispersive (Debye) media
with Ohmic conductivity and incorporate a model that describes the electromag-
netic/acoustic interaction. Our model features modulation of the material polariza-
tion by the pressure wave and thus the behaviour of the electromagnetic pulse. This
approach is based on ideas found in [MI68]. We incorporate a pressure dependent
Debye model for orientational polarization into Maxwell’s equations. We model the
propagation of a non-harmonic pulse from a finite antenna source in free space im-
pinging obliquely on a planar interface into the Debye medium. We use the finite
difference time domain method (FDTD) [Taf95] to discretize Maxwell’s equations
and to compute the components of the electric field in the case where the signal and
the dielectric parameters are independent of the y variable. Figure 1 depicts the
antenna and the Debye dielectric slab geometry that we will model in our problem
with the infinite dielectric slab perpendicular to the z-axis and uniform in the y-
direction and finite in the x-direction lying in the region −∞ ≤ y ≤ ∞, x1 ≤ x ≤ x2.
An alternating current along the x-direction of the antenna located at z = zc then
produces an electric field that is uniform in y with nontrivial components Ex and
Ez depending on (t, x, z). When propagated in the xz-plane, this results in oblique
incident waves on the dielectric surface in the xy-plane at z = z1. (In [BF95] the
authors use Fourier-series in the frequency domain to compute the propagation of
a time harmonic pulse train of plane waves that enter a dielectric across a planar
boundary at oblique incidence. They showed that precursors are excited by short
rise time pulses at oblique incidence. However, the use of Fourier series restricts
this approach to harmonic pulses.) The oblique waves impinge on the planar inter-
face that separates air and the Debye medium at z = z1 where they undergo partial
transmission and partial reflection. A reflected wave travels back to the antenna at
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z = zc and is recorded. The transmitted part of the wave travels through the Debye
medium and intercepts an acoustic pressure wave that is generated in the dielectric
medium. Here the microwave pulse undergoes partial transmission and reflection.
The reflected wave travels back through the Debye medium, undergoes a secondary
reflection/transmission at the air-Debye interface and is then recorded at the antenna.
Thus the antenna records three pieces of information; the input source, the reflection
of the electromagnetic pulse from the air-Debye interface and the reflection from the
pressure wave region. This data is recorded at the center of the antenna and will be
used in an inverse problem to estimate the dielectric properties of the Debye medium.
We note that the acoustic wave speed is many orders of magnitude smaller than the
speed of light. Thus the acoustic pressure wave is almost stationary relative to the
microwave pulse. In this report, we have assumed that the acoustic pressure wave
is specified a priori and hence we assume that the pressure wave is not modified by
the electromagnetic wave. This leads to a much simplified electromagnetic/acoustic
interaction model. The dynamic interaction between the two and the appropriateness
of this simplifying assumption are currently being investigated and will be the topic
of a future report.

An important computational issue in modeling two or three dimensional wave
propagation is the construction of a finite computational domain and appropriate
boundary conditions for terminating this domain in order to numerically simulate
an essentially unbounded domain problem. We surround the domain of interest by
perfectly matched absorbing layers (PML’s), thus producing a finite computational
domain. The original PML formulation is due to J. P. Berenger [Ber94] and was based
on a split form of Maxwell’s equations in which all the fields themselves were split
into orthogonal subcomponents. This formulation was appropriately called the split
field form. Many different variations of the split field PML are now available in the
literature. Most of these different formulations, though equivalent to the split field
PML, do not involve the splitting of the fields or splitting of Maxwell’s equations.
The PML formulation that we use in this report is based on the anisotropic (uniaxial)
formulation that was first proposed by Sacks et. al. [SKLL95].

We first present numerical results for the forward problem for two different test
cases. The relaxation times of the Debye media in these two test cases differ by
many orders of magnitude. We perform a sensitivity analysis in each test case to
determine which parameters are most likely to be accurately estimated in an inverse
problem. We also determine which of the pressure dependent parameters are the most
significant in each of the test cases. As we shall see, the significant difference in the
orders of magnitude of the relaxation times for the two test cases produces inverse
problems with very different estimation properties.

We next discuss a parameter estimation problem in which we estimate model
parameters for the two different Debye media from simulated data. We formulate
our inverse problem using the method of least squares. We compare two different
algorithms in solving the parameter estimation problems; the Levenberg-Marquardt
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method, which is a gradient based algorithm, and the Nelder-Mead method, which is
based on simplices and is gradient free. For the first test case, these two algorithms
produce similar results. However, in the second test case, we see the presence of many
local minima and the Nelder-Mead algorithm converges to a local minima instead of
the global minimum.

We also consider uncertainty in estimates due to data uncertainty. We present
a model for generating noisy data that we use in our inverse problems to simulate
experimental settings in which noise enters into the problem in a natural fashion. We
then discuss a statistical error methodology to analyze the results of the inverse prob-
lems based on noisy data. This statistical error analysis is used to obtain confidence
intervals for all the parameters estimated in the inverse problem. These intervals
indicate the level of confidence that can be associated with estimates obtained with
our methodology.

2 Model formulation: The forward problem

We consider Maxwell’s equations which govern the electric field E and the magnetic
field H in a domain Ω with charge density ρ. Thus we consider the system




(i)
∂D

∂t
+ J −∇× H = 0, in (0, T ) × Ω,

(ii)
∂B

∂t
+ ∇× E = 0, in (0, T ) × Ω,

(iii) ∇ · D = ρ, in (0, T ) × Ω,

(iv) ∇ · B = 0, in (0, T ) × Ω,

(v) E × n = 0, on (0, T ) × ∂Ω,

(vi) E(0,x) = 0, H(0,x) = 0, in Ω.

(1)

The fields D,B are the electric and magnetic flux densities respectively. All the
fields in (1) are functions of position r = (x, y, z) and time t. We have J = Jc + Js,
where Jc is a conduction current density and Js is the source current density. We
assume only free space (actually the antenna in our example) can have a source
current, and Jc is only found in the dielectric material. The condition (1, v) is a
perfectly conducting boundary condition on the computational domain which we will
replace with absorbing conditions in the sequel. With perfect conductor conditions,
the computational boundary acts like a hard wall to impinging electromagnetic waves
causing spurious reflections that would contaminate the data that we wish to use in
our inverse problems.

Constitutive relations which relate the electric and magnetic fluxes D,B and the
electric current Jc to the electric and magnetic fields E,H are added to these equations
to make the system fully determined and to describe the response of a material to the
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electromagnetic fields. In free space, these constitutive relations are D = ε0E, and
B = µ0H, where ε0 and µ0 are the permittivity and the permeability of free space,
respectively, and are constant [Jac99]. In general there are different possible forms
for these constitutive relationships. In a frequency domain formulation of Maxwell’s
equations, these are usually converted to linear relationships between the dependent
and independent quantities with frequency dependent coefficient parameters. We will
consider the case of a dielectric in which magnetic effects are negligible, and we assume
that Ohm’s law governs the electric conductivity. Thus, within the dielectric medium
we have constitutive relations that relate the flux densities D,B to the electric and
magnetic fields, respectively. We have




(i) D = ε0E + PID,

(ii) B = µ0H,

(iii) Jc = σEID,

(2)

In (2), ID denotes the indicator function on the Debye medium. Thus, Jc = 0 in
air. The quantity P is called the electric polarization. It is equal to zero in air and
is nonzero in the dielectric. Electric polarization may be defined as the electric field
induced disturbance of the charge distribution in a region. This polarization may
have an instantaneous component as well as ones that do not occur instantaneously;
the latter usually have associated time constants called the relaxation times which are
denoted by τ . We let the instantaneous component of the polarization to be related
to the electric field by means of a dielectric constant ε0χ and denote the remainder
of the electric polarization as PR. We have

P = PI + PR = ε0χE + PR, (3)

and hence the constitutive law (2, i) becomes

D = ε0εrE + PR, (4)

where εr = (1 + χ) is the relative permittivity of the dielectric medium.
To describe the behaviour of the media’s macroscopic electric polarization PR,

we employ a general integral equation model in which the polarization explicitly de-
pends on the past history of the electric field. This model is sufficiently general to
include microscopic polarization mechanisms such as dipole or orientational polariza-
tion(Debye), as well as ionic and electronic polarization(Lorentz), and other frequency
dependent polarization mechanisms [And67] as well as multiples of such mechanisms
represented by a distribution of the associated time constants (e.g., see [BG04]). The
resulting constitutive law can be given in terms of a polarization or displacement
susceptibility kernel g as

PR(t, x, z) =

∫ t

0

g(t − s, x, z)E(s, x, z)ds, (5)
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Figure 1: Antenna and dielectric slab configuration.

which, in the case (Debye) of interest to us here, can be written as

g(t) = e−t/τ ε0(εs − ε∞)

τ
. (6)

Such a Debye model can be represented in differential form as

τṖR + PR = ε0(εs − ε∞)E,

D = ε0ε∞E + PR,
(7)

inside the dielectric, whereas PR = 0, ε∞ = 1 in air, and ε∞ = εr in the dielectric.
We will henceforth denote PR by P. In equations (5) and (7), the parameters εs

and ε∞ denote the static relative permittivity, and the value of permittivity for an
extremely high(≈ ∞) frequency field, respectively. The quantity ε∞ is called the infi-
nite frequency permittivity. Biological cells and tissues display very high values of the
dielectric constants at low frequencies, and these values decrease in almost distinct
steps as the excitation frequency is increased. This frequency dependence of permit-
tivity is called dielectric dispersion and permits identification and investigation of a
number of completely different underlying mechanisms. This property of dielectric
materials makes the problem of parameter identification an important as well as very
useful topic for investigation.

We will modify system (1) and the constitutive laws (2) by performing a change
of variables that renders the system in a form that is convenient for analysis and
computation. From (1, i) we have

∂

∂t

(
D +

∫ t

0

Jc(s,x) ds

)
−∇×H = −Js, in (0, T ) × Ω. (8)
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Next, we define the new variable

D̃(t,x) = D(t,x) +

∫ t

0

Jc(s,x) ds. (9)

Using definition (9) in (8) and (1) we obtain the modified system




(i)
∂D̃

∂t
−∇×H = −Js in (0, T ) × Ω,

(ii)
∂B

∂t
+ ∇×E = 0 in (0, T ) × Ω,

(iii) ∇ · D̃ = 0 in (0, T ) × Ω,

(iv) ∇ · B = 0 in (0, T ) × Ω,

(v) E × n = 0 on (0, T ) × ∂Ω,

(vi) E(0,x) = 0, H(0,x) = 0 in Ω.

(10)

We will henceforth drop the˜ symbol on D. We note that equation (10, iii) follows
from the continuity equation ∂ρ

∂t
+ ∇ · J = 0, the assumption that ρ(0) = 0, and the

assumption that ∇ · Js = 0 (in the sense of distributions). The modified constitutive
laws (2) after substitution of Ohm’s law and (9) are




(i) D(t,x) = ε0ε∞(x)E(t,x) + PR +

∫ t

0

σ(x)E(s,x) ds,

(ii) B = µ0H,
(11)

with PR, the solution of
τṖR + PR = ε0(εs − ε∞)E. (12)

3 An anisotropic perfectly matched layer absorb-

ing medium

In one dimension exact absorbing boundary conditions can be constructed for ter-
minating a computational domain. In two and three dimensions, however, there are
no exact absorbing boundary conditions available. In such a case we can either use
approximate absorbing boundary conditions of some finite order (usually one or two),
or we can surround our computational domain by absorbing layers. In this report we
use the second approach and construct perfectly matched layers [Ber94] surrounding
the domain of interest. These layers have been demonstrated to have many orders of
magnitude better absorbing capabilities than the approximate absorbing boundary
conditions [Taf98]. In this section we will first construct PML’s that can be matched
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to free space and then we will explain how this construction can be generalized to the
case of a Debye medium.

The source current Js is zero inside the PML regions. So we will neglect Js in
this section. We model the PMLs as lossy regions by adding artificial loss terms to
Maxwell’s equations. This approach is based on using anisotropic material properties
to describe the absorbing layer [SKLL95, Ged96, Rap95]. We start with Maxwell’s
equations in the most general form




∂D

∂t
= ∇×H − Je,

∂B

∂t
= −∇×E − Jm,

∇ · D = 0,

∇ · B = 0,

(13)

where Je and Jm are electric and magnetic conductivities, respectively. Inside the
computational domain we will have Je = Jc and Jm = 0. We will derive a PML
model in the frequency domain and then transform the corresponding equations to
the time domain by taking the inverse Fourier transforms of the frequency domain
equations. To this end, we consider the time-harmonic form of Maxwell’s equations
(13) given by 



jωD̂ = ∇×Ĥ − Ĵe,

jωB̂ = −∇×Ê − Ĵm,

∇ · B̂ = 0,

∇ · D̂ = 0,

(14)

where for every field vector V, V̂ denotes its Fourier transform. We then have the
constitutive laws 



B̂ = [µ]Ĥ,

D̂ = [ε]Ê,

Ĵm = [σM ]Ĥ,

Ĵe = [σE]Ê.

(15)

In (15) the square brackets indicate a tensor quantity. Thus we allow for anisotropy in
our media by permitting the material parameters to be tensors. Note that when the
density of electric and magnetic charge carriers in the medium is uniform throughout
space, then ∇ · Ĵe = 0 and ∇ · Ĵm = 0. We define the new tensors




[µ̄] = [µ] +
[σM ]

jω
,

[ε̄] = [ε] +
[σE]

jω
.

(16)
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Using the definitions (16) we define two new constitutive laws that are equivalent to
(15), given by 


B̂new = [µ̄]Ĥ,

D̂new = [ε̄]Ê.
(17)

Using (17) in (14), we can write Maxwell’s equations in time-harmonic form as




jωD̂new = ∇×Ĥ,

jωB̂new = −∇×Ê,

∇ · D̂new = 0,

∇ · B̂new = 0.

(18)

The split-field PML introduced by Berenger [Ber94] is a hypothetical medium
based on a mathematical model. In [MP95] Mittra and Pekel showed that Berenger’s
PML was equivalent to Maxwell’s equations with a diagonally anisotropic tensor
appearing in the constitutive relations for D and B. For a single interface, the
anisotropic medium is uniaxial and is composed of both the electric and magnetic
permittivity tensors. This uniaxial PML (UPML) formulation performs as well as
the original split-field PML while avoiding the nonphysical field splitting. As will be
shown below, by properly defining a general constitutive tensor [S], we can use the
UPML in the interior working volume as well as the absorbing layer. This tensor
provides a lossless isotropic medium in the primary computation zone, and individual
UPML absorbers adjacent to the outer lattice boundary planes for mitigation of
spurious wave reflections. The fields excited within the UPML are also plane wave in
nature and satisfy Maxwell’s curl equations. The derivation of the PML properties
of the tensor constitutive laws is also done directly by Sacks et al. in [SKLL95] and
by Gedney in [Ged96]. We follow the derivation by Sacks et al. here. We begin
by considering planar electromagnetic waves in free space incident upon a PML half
space. Starting with the impedance matching assumption, i.e., the impedance of the
layer must match that of free space: ε−1

0 µ0 = [ε̄]−1[µ̄] we have

[ε̄]

ε0

=
[µ̄]

µ0

= [S] = diag{a1, a1, a3}. (19)

Hence, the constitutive parameters inside the PML layer are [ε̄] = ε0[S] and [µ̄] =
µ0[S], where [S] is a diagonal tensor. We next consider plane wave solutions of the
form

V(x, t) = V̂(x) exp(j(ωt − k · x)), (20)

for all field vectors V, to the time-harmonic Maxwell’s equations with the diagonally
anisotropic tensor, where k = (kx, ky, kz) is the wave vector of the planar electromag-
netic wave and x = (x, y, z). The dispersion relation for waves in the PML are found
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to be
k2

x

a2a3

+
k2

y

a1a3

+
k2

z

a1a2

= k2
0 ≡ ω2µ0ε0 ≡

ω2

c2
0

. (21)

where, c0 is the speed of light in free space.
To further explain our UPML formulation, we may, without loss of generality,

consider a PML layer which fills the positive x half-space and plane waves with wave
vectors in the xz- plane (ky = 0). Let θi be the angle of incidence of the plane wave
measured from the normal to the surface x = 0. The standard phase and magnitude
matching arguments at the interface yield the following generalization of Snell’s law

√
a1a3 sin θt = sin θi, (22)

where θt is the angle of the transmitted plane wave. Matching the magnitudes of the
electric and magnetic fields at the interface, x = 0, we obtain the following values of
the reflection coefficients for the TE and the TM modes




RTE =

cos θi −
√

a3

a2

cos θt

cos θi +

√
a3

a2

cos θt

RTM =

√
a3

a2

cos θt − cos θi

cos θi +

√
a3

a2

cos θt

(23)

From (23) we can see, that by choosing a3 = a2 = a and
√

a1a3 = 1, the interface
is completely reflectionless for any frequency, angle of incidence, and polarization.
Using (17) and (19), we thus find the constitutive laws for the perfectly matched
layer are 


D̂new = ε0[S]Ê,

B̂new = µ0[S]Ĥ,
(24)

where the tensor [S] is

[S] =




a−1 0 0
0 a 0
0 0 a


 . (25)

The perfectly matched layer is therefore characterized by the single complex number
a. Taking it to be the constant a = γ − jβ, and substituting into the dispersion
relation (21), we obtain the following expression for the electric field inside of the
PML

Ê(x, y, z) = Ê0 exp(−k0β cos θtx) exp(−jk0(γ cos θtx + sin θtz)) exp(jωt). (26)

Hence we can see that γ determines the wavelength of the wave in the PML and for
β > 0, the wave is attenuated according to the distance of travel in the x direction.
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Remark 1 To match the anisotropic PML along a planar boundary to a dispersive
isotropic half-space, we will need to modify the above construction for the phasor-
domain constitutive relation

D̂ = ε0εr(ω)Ê, (27)

where εr(ω) is the frequency dependent relative permittivity of the Debye medium,
which will be defined in a standard manner in (40) below.

3.1 Implementation of the uniaxial PML

To apply the perfectly matched layer to electromagnetic computations, we replace the
half infinite layer by a layer of finite depth backed with a more conventional boundary
condition, such as a perfect electric conductor (PEC). This truncation of the layer will
lead to reflections generated at the PEC surface, which can propagate back through
the layer to re-enter the computational region. In this case, the reflection coefficient
R, is now a function of the angle of incidence θ, the depth of the PML δ, as well as
the parameter a in (25). Thus, this parameter a for the PML is chosen in order for
the attenuation of waves in the PML to be sufficient so that the waves striking the
PEC surface are negligible in magnitude. Perfectly matched layers are then placed
near each edge (or face in the 3D case) of the computational domain where a non-
reflecting condition is desired. This leads to overlapping PML regions in the corners
of the domain. As shown in [SKLL95], the correct form of the tensor which appears
in the constitutive laws for these regions is the product

[S] = [S]x[S]y[S]z, (28)

where component [S]α in the product (28) is responsible for attenuation in the α
direction, for α = x, y, z (see Figure 2). All three of the component tensors in (28)
are diagonal and have the forms

[S]x =




s−1
x 0 0
0 sx 0
0 0 sx


 ; [S]y =




sy 0 0
0 s−1

y 0
0 0 sy


 ; [S]z =




sz 0 0
0 sz 0
0 0 s−1

z


 . (29)

In the above sx, sy, sz are analogous to the complex valued parameter a encountered
in the Section 3 analysis of the single PML layer. Thus, sα governs the attenuation of
the electromagnetic waves in the α direction for α = x, y, z. When designing PML’s
for implementation, it is important to choose the parameters sα so that the resulting
frequency domain equations can be easily converted back into the time domain. The
simplest of these [Ged96] which we employ here, is

sα = 1 +
σα

jωε0

, where σα ≥ 0, α = x, y, z. (30)
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Figure 2: PML layers surrounding the domain of interest. In the corner regions of the
PML, both σx and σz are positive and the tensor [S] is the product [S]x[S]z. In the
remaining regions only one of σz (left and right PML’s) or σx (top and bottom PML’s)
are nonzero and positive. The tensor [S], is thus either [S]x or [S]z respectively. The
PML is truncated by a perfect electric conductor (PEC).

The PML interface represents a discontinuity in the conductivities σα. To reduce
the numerical reflections caused by these discontinuous conductivities, the σα are
chosen to be functions of the variable α (e.g., σx is taken to be a function of x in
the [S]x component of the PML tensor). A choice of these functions so that σα = 0,
i.e., sα = 1 at the interface yields the PML a continuous extension of the medium
being matched and reduces numerical reflections at the interface. If one increases
the value of σα with depth in the layer, one obtains greater overall attenuation while
minimizing the numerical reflections. Gedney [Ged96] suggests a conductivity profile

σα(α) =
σmax|α − α0|m

δm
; α = x, y, z. (31)

where δ is the depth of the layer, α = α0 is the interface between the PML and
the computational domain, and m is the order of the polynomial variation. Gedney
remarks that values of m between 3 and 4 are believed to be optimal. For the
conductivity profile (31), the PML parameters can be determined for given values of
m, δ, and the desired reflection coefficient at normal incidence R0, as

σmax ≈ (m + 1) ln(1/R0)

2ηIδ
, (32)

ηI being the characteristic wave impedance of the PML. Emperical testing suggests
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Figure 3: PML layers surrounding the domain of interest.

that, for a broad range of problems, an optimal value of σmax is given by

σopt ≈
m + 1

150π∆α
√

εr

, (33)

where ∆α is the space increment in the α direction and εr is the relative permittivity
of the material being modeled. In the case of free space εr = 1. Since we desire to
match the PML to both free space as well as the Debye medium, we will use εr to be
the average value

εr =
1

2
(1 + ε∞) . (34)

3.2 Reduction to two dimensions

From the time-harmonic Maxwell’s curl equations in the PML (18) and (24), Ampere’s
and Faraday’s laws can be written in the most general form as




jωµ0[S]Ĥ = −∇×Ê, (Faraday’s Law)

jω[S]D̂ = ∇×Ĥ − Js, (Ampere’s Law)
(35)

In (35), [S] is the diagonal tensor defined via (28), (29) and (30). In the presence of
this diagonal tensor, a plane wave is purely transmitted into the uniaxial medium.
The tensor [S] is no longer uniaxial by strict definition, but rather is anisotropic.
However, the anisotropic PML is still referenced as uniaxial since it is uniaxial in
the nonoverlapping PML regions. Let Ω = X × Z denote the computational domain
along with the absorbing layers. We partition the interval X into disjoint closed
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intervals as X = XBpml ∪X0 ∪XTpml and the interval Z into disjoint closed intervals
as ZLpml∪Za∪ZD∪ZRpml, as seen in Figure 3. The computational domain of interest
is the region X0 × {Za ∪ ZD}, where X0 × Za denotes air and X0 × ZD denotes the
Debye medium. The buffer region D \ (X0 × {Za ∪ ZD}) contains the absorbing
layers (PML’s). The PML’s are backed by a perfect conductor where the boundary
condition n × E = 0 is used. We construct perfectly matched layers in regions
where (x, z) ∈ (XBpml ∪ XTpml) × (ZLpml ∪ ZRpml). To obtain a two-dimensional
model, we make the assumption that the signal and the dielectric parameters are
independent of the y variable. Also, an alternating current along the x direction, as
in (54), then produces an electric field that is uniform in y with nontrivial components
Ex and Ez depending on (t, x, z) which, when propagated in the xz plane result in
oblique incident waves on the dielectric surface in the xy plane at z = zc. With these
assumptions, Maxwell’s equations reduces to a two dimensional system for solutions
involving the Ex and Ez components for the electric field and the component Hy for
the magnetic field, which is refered to as the TEy mode. In this case, we have σy = 0
and sy = 1 in the UPML. From (11, i) and (7) expressed in the frequency domain we
have the constitutive relation

D̂ = ε0

(
ε∞ +

εs − ε∞
1 + jωτ

+
σ

jωε0

)
E. (36)

Rescaling the electric field as
˜̂
E =

√
ε0

µ0

Ê, (37)

we can write the time-harmonic frequency domain Maxwell’s equations (35) in the
uniaxial medium as




(i) jω

(
1 +

σz(z)

jωε0

)(
1 +

σx(x)

jωε0

)−1
ˆ̃Dx = −c0(

∂Ĥy

∂z
+ Js · x̂),

(ii) jω

(
1 +

σx(x)

jωε0

)(
1 +

σz(z)

jωε0

)−1
ˆ̃Dz = c0

∂Ĥy

∂x
,

(iii) jω

(
1 +

σx(x)

jωε0

)(
1 +

σz(z)

jωε0

)
Ĥy = c0

(
∂Êz

∂x
− ∂Êx

∂z

)
.

(38)

In the above c0 = 3.0 × 108 m/s is the speed of light in vacuum and ˆ̃
D = ( ˆ̃Dx,

ˆ̃Dz)
T

is defined as
ˆ̃
D = ε∗r · ˆ̃

E, (39)

with

ε∗r = ε∞ +
εs − ε∞
1 + jωτ

+
σ

jωε0

. (40)

To avoid a computationally intensive implementation, we define suitable constitutive
relationships that facilitate the decoupling of the frequency dependent terms [Taf98].

16



To this end, we introduce the fields




D̂∗
x = s−1

x
ˆ̃Dx,

D̂∗
z = s−1

z
ˆ̃Dz,

Ĥ∗
y = szĤy.

(41)

Again, dropping the˜symbol on D and transforming the frequency domain equations
to the time domain, we obtain the system




(i) ∂tH
∗
y +

σx(x)

ε0

H∗
y = c0

(
∂Ez

∂x
− ∂Ex

∂z

)
,

(ii) ∂tHy +
σz(z)

ε0

Hy = ∂tH
∗
y ,

(iii) ∂tD
∗
x +

σz(z)

ε0

D∗
x = −c0(

∂Hy

∂z
+ Js · x̂),

(iv) ∂tDx = ∂tD
∗
x +

σx(x)

ε0

D∗
x,

(v) ∂tD
∗
z +

σx(x)

ε0

D∗
z = c0

∂Hy

∂x
,

(vi) ∂tDz = ∂tD
∗
z +

σz(z)

ε0

D∗
z ,

(42)

with
D(t) = ε∞E(t) + P(t) + C(t), (43)

where D = (Dx, Dz)
T , and inside of the dielectric the polarization P = (Px, Pz)

T

satisfies
τṖ + P = (εs − ε∞)E, (44)

while the conductivity term C = (Cx, Cy)
T satisfies

Ċ = (σ/ε0)E . (45)

inside of the dielectric. Outside the dielectric we have P = C = 0. We will assume
zero initial conditions for all the fields.

3.3 Pressure dependence of polarization

We consider a pressure dependent Debye model for orientational polarization first
developed in [ABR02]. We assume that the material dependent parameters in the
differential equation (44) for the Debye medium depend on pressure p, i.e.,

τ(p)Ṗ + P = (εs(p) − ε∞(p))E. (46)
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We suppose as a first approximation that each of the pressure dependent parameters
can be prepresented as a mean value plus a perturbation that is proportional to the
pressure 



(i) τ(p) = τ0 + κτp,

(ii) εs(p) = εs,0 + κsp,

(iii) ε∞(p) = ε∞,0 + κ∞p.

(47)

This can be considered as a truncation after the first-order terms of power series
expansion of these functions of p. Thus (44) is written as

(τ0 + κτp)Ṗ + P = ((εs,0 − ε∞,0) + (κs − κ∞)p)E. (48)

This model features modulation of the material polarization by the pressure wave and
thus the behaviour of the electromagnetic pulse. We will assume that the acoustic
pressure wave is specified a priori. The pressure p will be assumed to have the form

p(t, z) = I(z2,z2+λp) sin

(
ωp[t +

z − z2

cp

]

)
, (49)

where z2 ∈ ZD with z1 < z2. The terms ωp, λp and cp denote the acoustic frequency,
wavelength and speed respectively. We note that outside the pressure region, the
pressure coefficients κτ , κs and κ∞ are all zero and

τ = τ0, εs = εs,0, ε∞ = ε∞,0. (50)

From (43) 
 (i) Dx(t) = (ε∞,0 + κ∞p)Ex(t) + Px(t) + Cx(t),

(ii) Dz(t) = (ε∞,0 + κ∞p)Ez(t) + Pz(t) + Cz(t),
(51)

with 
 (i) (τ0 + κτp)Ṗx + Px = ((εs,0 − ε∞,0) + (κs − κ∞)p)Ex,

(ii) (τ0 + κτp)Ṗz + Pz = ((εs,0 − ε∞,0) + (κs − κ∞)p)Ez,
(52)

and 
 (i) Ċx = (σ/ε0)Ex,

(ii) Ċz = (σ/ε0)Ez.
(53)

3.4 Source term

The source term Js will model an infinite (in the y direction) antenna strip, finite in
the x direction (between x1 and x2), lying in the z = zc plane in free space, and we
assume the signal is polarized with oscillations in the xz plane only, with uniformity
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in the y direction (see again Figure 1). We therefore take

Js(t, x, z) = I(x1,x2)(x)δ(z − zc) sin(ωc(t − 3t0)) exp

(
−
[
t − 3t0

t0

]2
)

x̂,

t0 =
2

ωd − ωc

, ωc = 2πfc rad/sec.

(54)

where I(x1,x2) is the indicator function on the interval (x1, x2) ∈ X0, δ(z − zc) is
the Dirac measure centered at z = zc, and x̂ is the unit vector in the x direction.
The Fourier spectrum of this pulse has even symmetry about the frequency fc. The
pulse is centered at time step 3t0 and has a 1/e characteristic decay of t0 time-steps
[Taf95]. We will specify the values of all the different quantities involved in (54)
when we define the particular problems that we will solve. The source (54) radiates
numerical waves having time waveforms corresponding to the source function. In
the discretized model, described below the radiated numerical wave will propagate to
the Debye medium and undergo partial transmission and partial reflection, and time
stepping can be continued until all transients decay.

3.5 Space and time discretization

We will use the FDTD algorithm [Taf95] to discretize Maxwell’s equations. The
FDTD algorithm uses forward differences to approximate the time and spatial deriva-
tives. The FDTD technique rigorously enforces the vector field boundary conditions
at interfaces of dissimilar media at the time scale of a small fraction of the impinging
pulse width or carrier period. This approach is very general and permits accurate
modeling of a broad variety of materials ranging from living human tissue to radar
absorbers to optical glass. The system of equations (42) can be discretized on the stan-
dard Yee lattice. The domain Ω is divided into square cells of length h = ∆x = ∆z,
h being the spatial increment. The degrees of freedom on an element are shown in
Figure 4. The electric field degrees of freedom are at the midpoints of edges of the
squares and the magnetic degrees of freedom are at the centers of cells. The time
interval over which time stepping is done is divided into subintervals of equal size
using the time increment ∆t. We perform normal leapfrogging in time and the loss
terms are averaged in time. This leads to an explicit time stepping scheme. In this
case, a stability condition (CFL) has to be satisfied [Taf95] in order to obtain a well
posed computational scheme. The time step ∆t and the spactial increment h for the
FD-TD scheme in non-dispersive dielectics are related by the condition

ηCN =
c0∆t

h
<

1√
2

(55)

The number ηCN is called the Courant number. We fix the value of ηCN = 1/2.
In [Pet94], the author established that several extensions of the FD-TD for Debye
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Figure 4: Degrees of freedom of E and H on a rectangle.

media satisfy the stability restriction of the standard FD-TD scheme in nondispersive
dielectrics. He has also shown that the extensions do not preserve the non-dissipative
character of the standard FD-TD scheme. The extended difference systems are more
dispersive than the standard FD-TD, and their accuracy depends strongly on how
well the chosen timestep resolves the shortest timescale in the problem regardless of
whether it is the incident pulse timescale, the medium relaxation timescale, or the
medium resonance timescale.

For any field variable V , we use the notation V r
l,m = V (r∆t, lh,mh), where r, l,m ∈

N or r = r0±1/2, l = l0±1/2,m = m0±1/2, with r0, l0,m0 ∈ N. With the degrees of
freedom as shown in Figure 4, the Maxwell curl equations are discretized as follows.
Given the values of the electric field at time n∆t and the values of the magnetic field
at time (n−1/2)∆t, we then evaluate the magnetic field at time (n+1/2)∆t and the
electric field at time (n + 1)∆t. We have for H∗

y = H∗

H∗|n+1/2
i+1/2,k+1/2 − H∗|n−1/2

i+1/2,k+1/2

∆t
+

σx(i + 1/2)

ε0

(
H∗|n+1/2

i+1/2,k+1/2 + H∗|n−1/2
i+1/2,k+1/2

2

)

= c0

(
Ez|ni+1,k+1/2 − Ez|ni,k+1/2

∆x

)
−c0

(
Ex|ni+1/2,k+1 − Ex|ni+1/2,k

∆z

)
.

(56)
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Solving (56) for H∗|n+1/2
i+1/2,k+1/2 we have the update equation

H∗|n+1/2
i+1/2,k+1/2 =

(
2ε0 − σx(i + 1/2)∆t

2ε0 + σx(i + 1/2)∆t

)
H∗|n−1/2

i+1/2,k+1/2+

(
2ε0c0∆t

2ε0 + σx(i + 1/2)∆t

)
×

(
Ez|ni+1,k+1/2 − Ez|ni,k+1/2

∆x
−

Ex|ni+1/2,k+1 − Ex|ni+1/2,k

∆z

)
.

(57)

Similarly we discretize the update equations for the other field variables in (42). The
update equation for Hy = H is

H|n+1/2
i+1/2,k+1/2 =

(
2ε0 − σz(k + 1/2)∆t

2ε0 + σz(k + 1/2)∆t

)
H|n−1/2

i+1/2,k+1/2

+

(
2ε0

2ε0 + σz(k + 1/2)∆t

)
×
(
H∗|n+1/2

i+1/2,k+1/2 − H∗|n−1/2
i+1/2,k+1/2

)
.

(58)

The update equation for D∗
x is

D∗
x|n+1

i+1/2,k =

(
2ε0 − σz(k)∆t

2ε0 + σz(k)∆t

)
D∗

x|ni+1/2,k

−
(

2ε0c0∆t

2ε0 + σz(k)∆t

)
×
(

Hy|n+1/2
i+1/2,k+1/2 − Hy|n+1/2

i+1/2,k−1/2

∆z
+ Jn

s,i+1/2,k

)
,

(59)

where the electromagnetic input source is chosen to have the form Jn
s,i+1/2,k = Jn

s,i+1/2,kx̂.
The update equation for Dx is

Dx|n+1
i+1/2,k = Dx|ni+1/2,k +

(
2ε0 + σx(i + 1/2)∆t

2ε0

)
D∗

x|n+1
i+1/2,k

+

(
2ε0 − σx(i + 1/2)∆t

2ε0

)
D∗

x|ni+1/2,k.

(60)

The update equation for D∗
z is

D∗
z |n+1

i,k+1/2 =

(
2ε0 − σx(i)∆t

2ε0 + σx(i)∆t

)
D∗

z |ni,k+1/2

+

(
2ε0c0∆t

2ε0 + σx(i)∆t

)
×
(

Hy|n+1/2
i+1/2,k+1/2 − Hy|n+1/2

i−1/2,k+1/2

∆x

)
.

(61)

Finally the update equation for Dz is

Dz|n+1
i,k+1/2 = Dz|ni,k+1/2 +

(
2ε0 + σz(k + 1/2)∆t

2ε0

)
D∗

z |n+1
i,k+1/2

+

(
2ε0 − σz(k + 1/2)∆t

2ε0

)
D∗

z |ni,k+1/2.

(62)

21



For the update of Ex and Ez we will combine equations (51)-(53). From (53) we have
the update for Cx and Cz as




Cx|n+1 = Cx|n +

(
σ∆t

2ε0

)
(Ex|n+1 + Ex|n) ,

Cz|n+1 = Cz|n +

(
σ∆t

2ε0

)
(Ez|n+1 + Ez|n) .

(63)

From (52) we have the update for Px as

Px|n+1 =

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
1 − ∆t

2(τ0 + κτpn)

)
Px|n

+

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn)

2(τ0 + κτpn)

)
Ex|n

+

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn+1)

2(τ0 + κτpn+1)

)
Ex|n+1.

(64)

Similarly, from (52) we have the update for Pz as

Pz|n+1 =

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
1 − ∆t

2(τ0 + κτpn)

)
Pz|n

+

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn)

2(τ0 + κτpn)

)
Ez|n

+

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn+1)

2(τ0 + κτpn+1)

)
Ez|n+1.

(65)

From (51) we have

Ex|n+1 =
1

(ε∞,0 + κ∞pn+1)

(
Dx|n+1 − Px|n+1 − Cx|n+1

)
. (66)

Substituting the update equations for P n+1
x and Cn+1

x in (66) we obtain an expression
for En+1

x in terms of En
x , Dn+1

x , Cn
x and P n

x given by

F(pn+1) =

(
1 +

∆t

2(τ0 + κτpn+1)

)−1(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn+1)

2(τ0 + κτpn+1)

)

+ (ε∞,0 + κ∞pn+1) +
σ∆t

2ε0

Ex|n+1 = F(pn+1)−1

[
Dx|n+1 − Cn

x − σ∆t

2ε0

Ex|n −
(

1 +
∆t

2(τ0 + κτpn+1)

)−1

×
{(

1 − ∆t

2(τ0 + κτpn)

)
Px|n +

(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn)

2(τ0 + κτpn)

)
Ex|n

}]
,

(67)

22



where Dx|n+1 is calculated from (60). Thus, all the terms on the right side are known
quantities, and we can use equation (67) to update Ex. Similarly the update equation
for Ez is

Ez|n+1 = F(pn+1)−1

[
Dz|n+1 − Cn

z − σ∆t

2ε0

Ez|n −
(

1 +
∆t

2(τ0 + κτpn+1)

)−1

×
{(

1 − ∆t

2(τ0 + κτpn)

)
Pz|n +

(
∆t((εs,0 − ε∞,0) + (κs − κ∞)pn)

2(τ0 + κτpn)

)
Ez|n

}]
,

(68)

with F(pn+1) as defined in (67). As before, we calculate Dz|n+1 from (62). Hence all
terms on the right hand side are known.

4 The forward problem for a Debye medium: First

test case

As discussed in Section 3.3 the pressure dependent parameters ε∗s, ε∗∞, and τ ∗ are
represented as a mean value plus a perturbation that is proportional to the pressure in
equations (47) (as discussed in [ABR02]). In our first test case, we present numerical
simulations for a Debye medium that is similar to water. For signal bandwidths in
the microwave regime the dispersive properties of pure water are usually modeled by
a Debye equation having a single molecular relaxation term. The mean values ε∗s,0,
ε∗∞,0, and τ ∗

0 for this Debye model [APM89] are given by

ε∗s,0 = 80.1 (relative static permittivity),

ε∗∞,0 = 5.5 (relative high frequency permittivity),

τ ∗
0 = 8.1 × 10−12 seconds,

σ∗ = 1 × 10−5 mhos/meter,

(69)

where the ∗ superscript will denote the true values of all the corresponding dielectric
parameters. Since we do not yet have experimental data to determine the actual
values, we instead choose trial values for the coefficients of pressure, κ∗

s, κ∗
∞ and κ∗

τ .
As a first approximation we take these trial values to be a fraction of the mean values
of the dielectric parameters, ε∗s,0, ε∗∞,0, and τ ∗

0 , respectively. Thus, in the pressure
region we choose

κ∗
s = 0.6ε∗s,0 = 48.06,

κ∗
∞ = 0.8ε∗∞,0 = 4.4,

κ∗
τ = 0.05τ ∗

0 = 4.05 × 10−13.

(70)

We hope to determine the values of these pressure coefficients from appropriately
designed experiments in the near future. We have assumed that the effect of the
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electric field on the acoustic pressure is negligible. We are interested in how and
to what extent the acoustic pressure can change the reflected electric wave from
the interface at z = z2. Moreover, the relaxation parameter is a characteristic of
the material in [z1, z2], which affects the transmission of electric waves through this
region. Consequently, we will examine in more detail how τ0 can effect the electric
field. The electromagnetic input source has the form

Js(t, x, z) = I(x1,x2)δ(z) sin(ωc(t − 3t0)) exp

(
−
[
t − 3t0

t0

]2
)

x̂

t0 =
1

2π × 109
; ωc = 6π × 109 rad/sec; fc = 3.0 × 109 Hz.

(71)

The Fourier spectrum of this pulse has even symmetry about 3.0 GHz. The com-
putational domain is defined as follows. We take X0 = (0, 0.1), Za = (0, 0.15) and
ZD = (0.15, 0.2). The number of nodes along the z-axis is taken to be 320 and the
number of nodes along the x-axis is taken to be 160. The spatial step size in both
the x and z directions is ∆x = ∆z = h = 0.1/160. From the CFL condition (55)
with the Courant number ηCN = 1/2 we obtain the time increment to be ∆t ≈ 1.0417
pico seconds. The central frequency of the input source as described in (71) is 3.0
GHz and based on the speed of light in air, c0 = 3× 108 m/s, we calculate the corre-
sponding central wavelength to be λc = (2πc0)/ω = 0.1 meters. The antenna is half a
wavelength long and is placed at (x1, x2)×zc, with zc = 0, x1 = 0.025 and x2 = 0.075.
We use PML layers that are half a wavelength thick on all fours sides of the compu-
tational domain as shown in Figure 3. The reflections of the electromagnetic pulse
at the air-Debye interface and from the acoustic pressure wave are recorded at the
center of the antenna (xc, zc), with xc = 0.05, at every time step. This data will be
used as observations for the parameter identification problem to be presented later.
The component of the electric field that is of interest here is the Ex component. Thus
our data is the set

E(q∗) = {Ex(n∆t, xc, zc;q
∗)}M

n=1

q∗ = (ε∗s,0, ε
∗
∞,0, τ

∗
0 , σ∗, κ∗

s, κ
∗
∞, κ∗

τ )
T .

(72)

The windowed acoustic pressure wave as defined in (49) has the parameter values
ωp = 6.0π × 105 rad/sec, cp = 1500 m/s, and thus, λp = 0.005. The location of the
pressure region is in the interval (z2, z2 + λp) = (0.175, 0.18).

In Figure 5 we plot the electromagnetic source that is used in the simulations for
the Debye model (69). We plot the power spectral density of the source (71) in Figure
6. The power spectral density |Y |2 of the vector Js is defined to be

Z = FFT(Js),

|Y |2 = Z · Z̄,
(73)
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Figure 5: Forward Simulation for a Debye medium with parameters given in (69) and
(70). The source as defined in (71)

where FFT(Js) is the fast fourier transform of the vector Js. As seen in Figure 6 the
power spectral density is symmetric about 3.0 GHz.

In Figures 7 and 8 we plot the Ex field magnitude at the center of the antenna
versus time, which shows the electromagnetic source, the reflection off the air-Debye
interface and the reflection from the region containing the acoustic pressure wave.
As seen in these plots the amplitude of the reflection from the acoustic pressure is
many orders of magnitude smaller than that of the initial electromagnetic source as
well as that of the reflection from the air-Debye interface. Thus, it is an interesting
question as to whether the reflections from the acoustic pressure region can be used
for identification of parameters.

In Figure 9 we plot the power spectral density of the data in Figure 7. In Fig-
ures 10 -14 we plot the Ex field magnitude in the plane containing the center of the
antenna versus depth along the z axis. Figures 10 and 11 shows the electromagnetic
wave penetrating the Debye medium. In 12 we see the reflection of the electromag-
netic wave from the Debye medium moving towards the antenna and the Brillouin
precursor propagating in the Debye medium. In Figure 13 we observe the reflection
from the region containing the acoustic pressure and the transmitted part of the
electromagnetic source travelling into the absorbing layer. The reflection from the
acoustic pressure crosses the Debye medium in Figure 14.
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Figure 6: Fourier transform of the source. The transform is centered around the
central frequency of ω = 6π × 109.
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Figure 7: Forward simulation for a Debye medium with parameters given in (69) and
(70). Time plot of the Ex component of the electric field. This is the data that is
received at the center of the antenna. This plot consists of the original signal (source),
the reflection off the Air-Debye interface and the reflection due to the pressure wave.
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Figure 8: Forward simulation for a Debye medium with parameters given in (69)
and (70). Time plot of the Ex component of the electric field. This is the data that
is received at the center of the antenna. This plot consists of the reflection off the
Air-Debye interface and the reflection due to the pressure wave.
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Figure 9: Fourier transform of the data in Figure 7. The transform is centered around
the central frequency of ω = 6π × 109.
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Figure 10: Forward simulation for a Debye medium with parameters given in (69)
and (70). Plot of the magnitude of the Ex component of the electric field against z
(meters). The input source is propagating towards the Debye medium.
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Figure 11: Forward simulation for a Debye medium with parameters given in (69)
and (70). Plot of the magnitude of the Ex component of the electric field against z
(meters). The input signal gets partially reflected off the Debye medium and partially
transmitted into the medium.
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Figure 12: Forward simulation for a Debye medium with parameters given in (69)
and (70). Plots of the magnitude of the Ex component of the electric field against z
(meters). In both the plots, the reflection off the air-Debye interface is seen moving
towards the antenna, while the transmitted part of the source is seen propagating in
the Debye medium towards the region containing the pressure wave.
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Figure 13: Forward simulation for a Debye medium with parameters given in (69)
and (70). Plot of the magnitude of the Ex component of the electric field against z
(meters). The interaction of the electromagnetic wave with the pressure wave causes
the electromagnetic wave to partially reflect and partially transmit.

4.1 Sensitivity analysis

Here we examine the system dynamics as the parameters vary. We are interested in
the changes produced by the coefficents of pressure in the polarization, namely the
parameters κs, κ∞ and κτ . In Figure 15 we plot the Ex component of the electric field
for the simulation with parameter values given in (69) and four other simulations for
which all the parameters, except κs, are fixed at the values given in (69). We change
the value of κs to 0, 0.3εs,0, 0.6εs,0 and 0.9εs,0, repectively, and plot the electric field
values for each of the corresponding forward simulations. As expected, by changing
the value of κs, we notice a change in the magnitude of the acoustic reflection observed
at the center of the antenna.

In order to determine if the forward problem is sensitive to changes in the value of
the pressure coefficient κ∞, in Figure 16 we plot the absolute value of the differences
in the Ex field component between simulations in which all the parameters except
κ∞ are fixed at the values given in (69). The solid line in this figure represents
the difference in the Ex field magnitude between the forward simulation in which
κ∞ = 0.8ε∞,0 and the simulation in which κ∞ = 0. The dashed line represents the
difference in the Ex field magnitude between the simulation in which κ∞ = 0.8ε∞,0

and the simulation in which κ∞ = 0.2ε∞,0. We now determine if the forward problem
is sensitive to changes in the value of the pressure coefficient κτ . In Figure 17 we plot
the absolute value of the differences in the Ex field component between simulations in
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Figure 14: Forward simulation for a Debye medium with parameters given in (69)
and (70). Plot of the magnitude of the Ex component of the electric field against z
(meters). The reflection from the acoustic pressure wave impinges on the air-Debye
interface, while the wave transmitted into the pressure region moves into the right
absorbing layer.
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Figure 15: Plot of the magnitude of the Ex component of the electric field against z
(meters) for different values of the parameter κs. The other parameters are fixed at
the values given in (69) and (70)
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Figure 16: Plot of the absolute value of the difference in magnitude of the Ex compo-
nent of the electric field, between simulations in which κ∞ = 0.8ε∞,0 and simulations
with different values of κ∞, against z (meters). The other parameters are fixed at the
values given in (69) and (70).
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simulations with different values of κτ , against z (meters). The other parameters are
fixed at their true values.
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which all the parameters except κτ are fixed at the values given in (69). The solid line
in this figure represents the difference in the Ex field magnitude between the forward
simulation in which κτ = 0.05τ0 and the simulation in which κτ = 0. The dashed line
represents the difference in the Ex field magnitude between the simulation in which
κτ = 0.05τ0 and the simulation in which κτ = 0.2τ0 From these plots we observe that
the parameter κs seems to be the most influential in the wave interaction, whereas the
pressure coefficients κ∞ and κτ do not seem to be as influential. This observation can
be supported from an analysis of (40). In our simulations the outgoing and reflected
radiation will be dominated by frequencies near the center frequency 3.0 GHz. Thus,
ε∗r will be dominated by frequencies near 3.0 GHz. In this problem ωτ ∗

0 ≈ O(10−2),
and ε0 = 8 × 10−12. Rewriting (40) as

ε∗r =
εs

1 + jωτ
+

(
jωτ

1 + jωτ

)
ε∞ +

σ

jωε0

, (74)

we consider each of the three terms in (74) separately to determine their magnitude.
The magnitudes of the corresponding true values of these three terms (neglecting the
acoustic pressure terms) are approximately given as

(
ε∗s,0

1 + jωτ ∗
0

)
≈ O(ε∗s,0) ≈ O(10),

(
jωτ ∗

0

1 + jωτ ∗
0

)
ε∞,0 ≈ O(10−2ε∗∞,0) ≈ O(10−2),

(
σ∗

jωε0

)
≈ O(102σ∗) ≈ O(10−3).

(75)

Thus we see that ε∗r will be most sensitive to the static permittivity εs,0 and the
effects of ε∞,0 and τ0 will not be as pronounced. Also, this implies that ε∗r will be
more sensitive to the pressure coefficient κs than to the coefficients κ∞ and κτ , which
coincides with the observation that was made from Figures 15, 16 and 17

We would also like to see what effect the acoustic speed and frequency have on
the amplitude of the reflection from the acoustic pressure region. In Figure 18 we
plot the acoustic reflection observed at the center of the antenna for different values
of the acoustic frequency and in Figure 19 we plot the acoustic reflection for different
values of the acoustic speed. By changing the speed or the frequency, the wavelength
λp changes and thus the size of the interval (z2, z2 +λp) in which the pressure wave is
generated. The amplitude of the acoustic reflection appears to decrease as the acoustic
frequency is increased and increases at the acoustic speed increases. We note here
that our windowed pressure wave contains only one wavelength of the sinusoid. Thus
in general it will be difficult to predict precisely how the reflections will behave as the
speed or the frequency is changed.
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Figure 18: Plot of the reflection from the pressure region that is measured at the
center of the antenna, versus time t (bottom), corresponding to different windowed
acoustic pressure waves (top) of varying acoustic frequencies. The other parameters
are fixed at the values given in (69) and (70). We note that the amplitude of the
reflection changes as the frequency of the pressure wave changes.
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Figure 19: Plot of the reflection from the acoustic region that is measured at the
center of the antenna, against time t (bottom), corresponding to different windowed
acoustic pressure waves (top) of varying acoustic speeds. The other parameters are
fixed at the values given in (69) and (70). We observe that the magnitude of the
reflection is affected by the speed of the acoustic wave.
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5 Parameter estimation and statistical inference:

The inverse problem

In our forward simulations the signal that we record at the center of the antenna is a
set of measurements of Ex, the x component of the electric field, at the point (0, zc)
in our computational domain at discrete, uniformly spaced intervals of time. This
signal has components consisting of the input source, the reflection at the air-Debye
interface and another reflection from the region that contains the pressure wave as
seen in Section 4. The signal is a function of the various dielectric properties of the
Debye medium; namely, the static relative permittivity εs,0, the infinite frequency
permittivity ε∞,0, the relaxation time τ0, the conductivity σ, and the three pressure
coefficients κs, κ∞ and κτ . We collect all these quantities together to define the
parameter vector

q = [εs,0, ε∞,0, τ0, σ, κs, κ∞, κτ ]
T . (76)

Thus, the signal recorded in the forward simulation is a function of q, and changing
the value of q will change the signal that is recorded. In general, such signals are
usually obtained in an experimental setting conducted in a laboratory with physical
equipment such as electric pulse generators to generate electric pulses, piezoelectric
transducers that generate the acoustic pressure waves and antennas/receivers that
record the electric field intensities. Moreover, such signals generated in an experi-
mental setting are usually noisy, with noise arising through the equipment that is
used; namely the resistor, antenna/receiver and the transducer, in our case. Implicit
in such collection of measurements is the assumption that there exist true values of
all the parameters that characterize the medium to be interrogated. We will denote
the corresponding true parameter vector by q∗.

In order to simulate an experimental situation (i.e., generate typical “data”) we
assume that there exist true values of all the parameters involved in our problem,
and we use these true values (which of course would not be known in an experimental
setting!) in our forward simulation, viz. the FDTD method and record the signal
observed at the antenna as described above. We then add noise to the generated signal
to produce a noisy signal which will form the observations or data that we will use in an
inverse problem, as a substitute for data generated in the laboratory. The goal of our
electromagnetic interrogation technique is to identify or estimate the true parameter
q∗ that characterizes the particular Debye medium being interrogated, from data
that consists of a signal recorded at the center of the antenna. The reason for using
simulated data in the inverse problem is to validate the methods first on “data” from
known parameters in a setting with known noise. If we cannot estimate the dielectric
parameters from data that is constructed via numerical simulations of our discrete
model, then the reconstruction of these parameters from actual experimental data
usually will not be feasible.

We can state the inverse or parameter estimation problem that we will attempt to
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solve as follows: Using observations or data (electric field intensities containing noise
collected at the center of the antenna), determine an estimate q̂, of the true parameter
q∗, that belongs to an admissible set Q, so that the solution of the forward problem
with q = q̂ best describes the data that is collected. When we have solved this
deterministic problem (as will be detailed below), it will also be necessary to specify
reliablility of our estimates, i.e., can we specify measures of uncertainty related to
the estimate q̂ of q∗? It is important to note that the uncertainty in consideration is
inherent in the method of producing the estimates as well as in the process of data
collection. Such measures of uncertainty will be specified by means of confidence
intervals. These intervals are a probability statement about the procedure which
is used to construct estimates of the parameters. Thus we are led in a completely
natural way to stochastic or probabilistic aspects of estimates from a deterministic
problem solved with deterministic algorithms [BB99]. The statistical error analysis
that we will present here is based on standard statistical formulations as given in
[DG95].

We first consider the two different ways in which we can add noise to our signal,
i.e., the values of the x component, Ex, of the electric field observed at the center of
the antenna, (0, zc), for different times tk = k∆t, k = 0, 1, . . . ,M . We represent this
signal as the vector

(i) E(q∗) = {E∗
k}M

k=1 = (Ex(t1, 0, zc;q
∗), . . . , Ex(tM , 0, zc;q

∗))T ,

(ii) q∗ = (ε∗s,0, ε
∗
∞,0, τ

∗
0 , σ∗, κ∗

s, κ
∗
∞, κ∗

τ )
T ,

(77)

q∗ being the true parameter vector.

1. Relative random noise (RN) : In this case the amplitude of the noise that is
added is proportional to the size of the signal, {E∗

k}M
k=1. Our simulated data is

Os
k = E∗

k(1 + νηs
k), k = 1, . . . M, (78)

where η̄ = {ηk}M
k=1 are independent normally distributed random variables with

mean zero and variance one, i.e., ηk ∼ N (0, 1), k = 1, . . . ,M . We express the
relative magnitude of the noise as a percentage of the magnitude of E(q∗) by
taking two times the value of ν as the size of the random variable. For example,
ν = 0.005 corresponds to 1% relative noise [BBL00]. This noise model does not
produce constant variance across the samples.

2. Constant variance noise: Since constant variance is most conveniently assumed
in standard error analysis, we will consider estimates obtained from an inverse
problem applied to simulated data which contains constant variance random
noise. The data that we try to fit in this case is

Os
k = E∗

k + βηs
k, k = 1, . . . M, (79)
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where as in (78), ηk ∼ N (0, 1), k = 1, . . . ,M . The constant β is taken to be
the product να, where α is a scaling factor which is chosen so that the signal
to noise ratio (SNR) of the data defined in (79) corresponds to data defined in
(78) with noise level ν. This justifies comparing results obtained with the two
different ways of adding comparable noise to our signal. This will be addressed
in more detail in Section 5.

The vector Os = {Os
k}M

k=1 will be our data or observations, and the noise η̄ = {ηk}M
k=1

will be referred to as the measurement errors corresponding to the observations.
The statistical error analysis that we now develop is only applicable to the case of
constant variance noise. Thus, for the rest of this section, we will assume that our
observations are of the form (79). The sample observations Os, which are in general
obtained from experiment, are a realization of the corresponding random variable
O = (O1, O2, . . . , OM)T which can be seen to be a transformation of the random
variable η̄. Thus

Ok = E∗
k + βηk, k = 1, . . . M, (80)

is a stochastic process and has a multivariate normal distribution with mean vector
E(q∗) defined in (77, i) and covariance matrix β2IM . The statistical model

O ∼ NM{E(q∗), β2IM}, (81)

is a formal representation of the population of all possible realizations of O1, O2, . . . , OM

that can be observed. When we collect data, we are observing a single realization
of Os

1, . . . , O
s
M i.e., a sample. Our objective then is to estimate the true value of the

parameter q∗ by collecting data, i.e., observing a single realization of O as well as
accounting for the fact that a different realization will produce a different estimate of
q∗. We would like to learn about the true value q∗ (which determines the nature of
the population) from a sample, as well as indicate the certainty (or uncertainty) that
we can associate to our knowledge of this parameter. This process of making state-
ments about a population of interest on the basis of a sample from the population is
called statistical inference.

The unknown true parameters vector q∗ will be estimated by means of a suit-
able function q̂(O) of the observations O. The function q̂(O) is a random vari-
able and is referred to as an estimator. When evaluated at a particular realization,
Os

1, O
s
2, . . . , O

s
M , this estimator yields a numerical value that gives information about

the true value of the parameter q∗. For a particular realization Os of the random
variable of observations O, we call q̂(Os) an estimate. In this report we will consider
the method of least squares to obtain estimates for the parameters and to calculate
confidence intervals for the estimates by linearizing around the estimate q̂(Os). In
this case q̂(O) will be the least squares estimator q̂OLS(O). Associated with the ran-
dom variable q̂OLS(O) is the probability space Q = (Q,B,m), where Q is the sample
set of all admissible parameters q, B is the σ-algebra of events and m is the probabil-
ity measure (or distribution). Thus we look for the least squares estimator q̂OLS(O)
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on Q such that

q̂OLS(O) = arg min
q̂ on Q

J(q̂),

J(q̂) =
1

2

M∑

k=1

|Ex(tk, 0, zc; q̂) − Ok|2 ,
(82)

where E(q) = (Ex(t1, 0, zc;q), Ex(t2, 0, zc;q), . . . , Ex(tM , 0, zc;q))T will be generated
by our forward simulation. We will refer to the vector E(q) as our simulations. For a
particular realization Os of the random variable O of observations, this process will
yield the least squares estimate q̂OLS(O

s) ∈ Q, where

q̂OLS(O
s) = arg min

q∈Q
JS(q),

JS(q) =
1

2

M∑

k=1

|Ex(tk, 0, zc;q) − Os
k|2 ,

(83)

5.1 Calculation of confidence intervals via linearization

In general, the mappings between the parameters q and the simulations E are non-
linear. Let Ek = Ex(tk, 0, zc;q). The functions

E1(q1, . . . , ql) = Ex(t1, 0, zc;q),

E2(q1, . . . , ql) = Ex(t2, 0, zc;q),

...
EM(q1, . . . , ql) = Ex(tM , 0, zc;q),

(84)

denote real-valued differentiable functions of the unknown parameters q = (q1, . . . , ql)
T ,

where 1 ≤ l ≤ 7 depending on how many parameters we attempt to identify. Let
q = q∗ +Dq, where the corrector term Dq = (∆q1, . . . ∆ql)

T is unknown. Linearizing
the functions in (84) around the true parameter q∗ by using the Taylor expansion we
obtain

Ek(q1, . . . ql) = Ek(q
∗
1 + ∆q1, . . . , q

∗
l + ∆ql)

= Ek(q
∗) +

l∑

j=1

∂Ek

∂qj


q∗

∆qj, k = 1 . . . M.
(85)

Let us define
De = (O1 − E1(q

∗), . . . , OM − EM(q∗))T , (86)

and

X (q∗) =




∂E1

∂q1


q∗

. . . ∂E1

∂ql


q∗

...
...

...
∂EM

∂q1


q∗

. . . ∂EM

∂ql


q∗


 . (87)
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Thus, in order to estimate the unknown corrector terms by the method of least
squares, the estimator D̂OLS is determined by

D̂OLS = min
Dq

1

2
(De −X (q∗)Dq)

T (De −X (q∗)Dq), (88)

which is the linearized version of (82). This involves solving

∂
(
DT

e De − 2DT
e X (q∗)D̂OLS + D̂T

OLSX (q∗)TX (q∗)D̂OLS

)

∂D̂OLS

= 0, (89)

and the corresponding optimality condition yields the estimator

D̂OLS = (X (q∗)TX (q∗))−1X (q∗)TDe. (90)

We note that the expected value of D̂OLS is Exp(D̂OLS) = 0, and the covariance matrix
of D̂OLS and hence also of q̂OLS is

Cov(D̂OLS) = (X (q∗)TX (q∗))−1X (q∗)T Cov(De)X (q∗)(X (q∗)TX (q∗))−1

= β2(X (q∗)TX (q∗))−1 = Cov(q̂OLS),
(91)

where q̂OLS = q∗ + D̂OLS, and β is defined in (79). Thus the least squares estimator
is a random variable with a multivariate normal distribution which after linearization
can be approximately represented as

q̂OLS(O) ∼ Nl

(
q∗, β2[X T (q∗)X (q∗)]−1

)
. (92)

However, when data is generated in an experimental setting, we do not have any

knowledge of the true parameter vector q∗ and hence we cannot calculate
(
X (q∗)TX (q∗)

)−1
.

Thus, we further approximate our least squares estimator as having the multivariate
normal distribution

q̂OLS(O) ∼ Nl

(
q̂OLS(O

s), β̂2
OLS[X T (q̂OLS(O

s))X (q̂OLS(O
s))]−1

)
, (93)

which is obtained by repeating the linearization process around the estimate q̂OLS(O
s)

obtained from a realization Os of the random variable O of observations. The value
of β̂2

OLS is chosen as

β̂2
OLS =

1

M − l

M∑

k=1

|Ex(tk, 0, zc; q̂OLS(O
s)) − Os

k|2 , (94)

which is the minimum value of the least squares objective function scaled by 2/(M−l).
Whenever an estimate based on data is reported, it should be accompanied by

an assessment of uncertainty based on the sampling distribution. To this end we

40



will construct confidence intervals for all the estimates that we will provide. The
approach we use is to look at the standard error (SE) for each of the l components
of the estimate q̂OLS(O

s), which is given for its jth component by the jth diagonal
term of the covariance matrix, i.e.,

SE(q̂OLS,j) =
√

var(q̂OLS,j(Os))

=
√

β̂2
OLS ((X (q̂OLS(Os))TX (q̂OLS(Os)))−1)jj j = 1, . . . , l.

(95)

We construct the intervals

CIj = (q̂OLS,j(O
s) − 1.96SE(q̂OLS,j), q̂OLS,j(O

s) + 1.96SE(q̂OLS,j)) , j = 1, . . . , l,
(96)

for which

m ({q̂OLS,j(O
s) − 1.96SE(q̂OLS,j) < q̂OLS,j(O) < q̂OLS,j(O

s) + 1.96SE(q̂OLS,j)}) = 0.95,

j = 1, . . . , l,

(97)

where m is the probability measure for the probability space Q, and M is sufficiently
large that one can use a Gaussian N (0, 1) distribution in computing confidence in-
tervals. These intervals CIj are called confidence intervals with confidence level 0.95
or the 95% confidence interval.

Remark 2 The confidence intervals are a probability statement about the procedure
by which an estimate is constructed from a sample of the population. They are not a
probability statement about the true parameter q∗ which is fixed. If we could construct
the confidence intervals, from our estimation procedure, for all possible data samples
of size M, then 95% of such intervals would cover the true parameter values q∗.
However, for a particular data sample Os, the confidence intervals constructed as
above may or may not cover the true parameter q∗. What we can state is that we are
95% confident that the confidence intervals constructed by our estimation procedure
would cover q∗.

6 Parameter estimation: First test problem

We now attempt to estimate the dielectric parameters for the Debye medium defined
in (69) and (70). We restate the values of all the parameters below

ε∗s,0 = 80.1

ε∗∞,0 = 5.5

τ ∗
0 = 8.1 × 10−12

σ∗ = 1 × 10−5

κ∗
s = 48.06

κ∗
∞ = 4.4

κ∗
τ = 4.05 × 10−13.

(98)
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We will refer to the values (98) as the true values of the parameters. We will solve
the corresponding least squares optimization problem using two different methods;
the Nelder-Mead algorithm, which is a simplex based, gradient free method, and
the Levenberg-Marquardt trust region method that uses forward finite differences to
calculate the gradient. From our estimates for all the seven parameters we will show
that our problem is sensitive to only three of the seven parameters. We will then
try to estimate two or three of the parameters to which our problem is sensitive.
The particular implementation of the Levenberg-Marquardt and the Nelder-Mead
algorithm that are used in this report are based on the corresponding algorithms
presented in [Kel99]

6.1 Simulation results: The Nelder-Mead method

We first present parameter estimation results using the Nelder-Mead simplex based
algorithm which is used for optimization in noisy problems. The Nelder-Mead simplex
algorithm keeps a simplex S of approximations to an optimal point. In this algorithm
the vertices of the simplex {qi}l+1

i=1, where l is the size of q, are sorted according to
the least squares objective function values

JS(q1) ≤ JS(q2) ≤ . . . JS(ql+1). (99)

q1 is called the best vertex and ql+1 the worst. The algorithm attempts to replace
the worst vertex ql+1 with a new point of the form

q(νnm) = (1 + νnm)q̄ − νnmql+1, (100)

where q̄ is the centroid of the convex hull of {qi}l+1
i=1

q̄ =
1

l

l∑

i=1

qi. (101)

The value of νnm is selected from a sequence of values that are computed by performing
several different operations on the simplex. In general, the Nelder-Mead algorithm is
not guaranteed to converge, even for smooth problems. The failure mode is stagnation
at a nonoptimal point. For further details we refer the reader to [Kel99].

In the first test we will try to estimate all of seven parameters in q∗. The initial
simplex is chosen to have values that are 5-10% larger than the true parameter values
given in (98). We do not add any noise to our data that is used in the parameter
estimation in this first test. The final estimates from the Nelder-Mead algorithm
are presented in Table 1. The details of the simulation are plotted in Figures 21-
22. Figure 21 plots the various features of the Nelder-Mead run as functions of the
number of iterations. The algorithm is terminated when the maximum least squares
function value difference between any two points in the simplex is less than 10−8.
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Parameter True Values Final Estimates
εs,0 80.1 80.1111
ε∞,0 5.5 5.7461
τ0 8.1 × 10−12 8.1283 × 10−12

σ 1.0 × 10−5 1.1972 × 10−5

κs 48.06 48.1227
κ∞ 4.4 4.9148
κτ 4.05 × 10−13 4.1935 × 10−13

Table 1: Final estimates for all seven param-
eters for water using Nelder-Mead. The ini-
tial parameter simplex has values that are
5-10% larger than the true values.

Function Difference 7.6979 × 10−9

Max Oriented Length 2.4986 × 10−3

Average least squares value 9.8451 × 10−6

Best Least squares value 9.8392 × 10−6

L2 norm of the gradient 1.008 × 10−2

L∞ norm of gradient 8.756 × 10−3

Number of forward solves 453

Table 2: Status of the Nelder-Mead Simula-
tion at the 283rd iteration.
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Figure 20: Variation of εs,0, τ0 and κs with respect to iteration number. Out of all
seven parameters these three parameters are relatively well estimated.

The algorithm converges in 283 iterations. Table 2 presents the final status of the
simulation. In Figure 21, the maximum oriented length is defined as

Max Oriented length = max
2≤i≤l+1

||q1 − qi||. (102)

Also the gradient in this case refers to the simplex gradient. As can be seen from
Figure 22 the parameters ε∞,0, σ and the two pressure coefficients κ∞ of ε∞,0 and
κτ of τ0 are difficult for the inverse problem to identify. On the other hand, from
Figure 20 we see that the parameters εs,0 and its pressure coefficient κs as well as
the parameter τ0 are relatively well estimated. Since the inverse problem is only able
to identify three parameters in the absence of noise we do not expect to see any
improvement when noise is added to the data! Thus we will henceforth concentrate
on the identification of εs,0, τ0 and κs.

We will first attempt the identification of εs,0 and κs. In a first test, we fix all
the other 5 parameters (including τ0) at the true values and attempt to identify εs,0

and κs. Table 3 presents the results for this test. As can be seen from Table 3, with
the other 5 parameters fixed at their true values we do not have any difficulty in
identifying εs,0 and κs accurately. In Table 3, FC denotes the function count, i.e., the
number of times the least squares objective function is evaluated. In Figure 23 we
plot the values of ε̂s,0 (left) and κ̂s (right) over all iterations, for the three different
initial simplicies with values that are 5%-10% lower than q∗ (o-), 5% -10% higher
than q∗(- -), and 50%-60% lower than q∗(-).

In Figure 24 we plot the details of the Nelder-Mead simulations for the three
different initial simplices tabulated in Table 3. In each case the algorithm converges
when the difference between function values is less than 10−8. For the second case
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Figure 21: Nelder-Mead for the estimation of seven parameters for water.
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Figure 22: Variation of ε̂∞,0, σ̂ and estimates of the two pressure coefficients, namely,
κ̂∞ and κ̂τ , with respect to iteration number. As can be seen our inverse problem is
not sensitive to these four parameters and their identification is difficult even in the
absence of noise.
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Figure 23: Plots of ε̂s,0 (left) and κ̂s (right) against the number of iterations for
simulations in which the other five parameters are fixed at their true values and no
noise is added to the data. (o-) 0.95q∗, (- -) 1.05q∗, (-) 0.5q∗.

Table 3: Parameter estimation of εs,0 and κs for different initial simplices with no
added noise.

q0 Iter ε̂s,0 κ̂s |JS
n+1 − JS

0 | JS ||∇JS||L2 FC
0.95q∗ 33 80.0999 48.0607 4.7019×10−9 1.4560×10−8 0.0204 65
1.05q∗ 32 80.1 48.06 9.5079×10−9 7.1205×10−27 0.0096 66
0.5q∗ 59 80.1001 48.0603 8.4746×10−9 5.5171×10−9 0.0130 112

47



where the initial simplex has points with 5%-10% larger values than the true values,
we obtain an unusually small least squares function value of the order of 10−27. We
believe this to be an accidental artifact of the algorithm. In Figure 25 and 26 we plot
the least squares objective function for values of εs,0 and κ̂s that differ by 0%-10% from
the true values. The other five parameters are kept fixed at their true values. From
Figures 25 and 26, we determine that our inverse problem is more sensitive to εs,0 than
to the pressure coefficient κs. This is expected as the static relative permittivity, εs,0

is more influential in the system dynamics than the pressure coefficients, and hence
is also more important in identifying and characterizing the material.

As explained in Section 5, in a more realistic situation we will not have access
to the true values of any of the parameters. Hence, we now fix five of the seven
parameters at values that have a relative error from the true values of about 10%-
50%. We use the values

ε∞,0 = 6.0,
τ0 = 10.0 × 10−12,
σ = 1.5 × 10−5,
κ∞ = 4.8,
κτ = 5.0 × 10−13,

(103)

in our simulations. Such choices for the parameters are typical in testing algorithms
[BK89]. We use different initial guesses for εs,0 and κs. Also in an experimental setting
noise is introduced into the data, as discussed earlier. To simulate the experimental
process in data collection we first add relative random noise to our data, and we use
the fixed values (103) in the inverse problem. The results are tabulated in 4. From
Table 4 we see that using the inverse problem we are able to estimate εs,0 but we
are unable to reconstruct κs with good accuracy. In Figure 27 we plot the values of
ε̂s,0 (left) and κ̂s (right) over all iterations, In Figure 28 we plot the details of the
Nelder-Mead simulation for the results in Figure 27 and Table 4 which show the final
estimates of εs,0 and κs for water. The other five parameters are fixed at the values
given in (103) and relative noise of varying levels is added to the data.

To understand why κs is not recovered, we note that the fixed value of τ0 in (103)
has a relative error of 23% from its true value. Since the reflections from the acoustic

Table 4: Parameter estimation of εs,0 and κs for 0%, 1%, 3% and 5%
relative noise.

% RN Iter ε̂s,0 κ̂s |JS
n+1 − JS

0 | JS ||∇JS||L2 FC
0.0 37 80.3636 66.0486 8.5719×10−9 2.5594 0.0076 73
1.0 41 80.3638 66.0422 3.2939×10−9 25.2195 0.0098 80
3.0 40 80.3640 66.0280 8.6023×10−9 208.1146 0.0080 77
5.0 40 80.3643 66.0157 6.3563×10−9 574.4429 0.0060 79
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Figure 24: Nelder-Mead for the estimation of εs,0 and κs for water. The other five
parameters are fixed at their true values and no noise is added to the data. (o-)
0.95q∗, (- -) 1.05q∗, (-) 0.5q∗.
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We can see from this plot that the problem is more sensitive to εs,0 than to the
pressure coefficient κs.
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Figure 27: Plots of ε̂s,0 (left) and κ̂s (right) against the number of iterations for
simulations in which the other five parameters are fixed at values that have 10%-50%
relative error from the true values (103) and relative noise of varying levels is added
to the data.

region depend strongly on the value of τ0, a relative error of 23% is too high to get
a good estimate of the pressure coefficients. To test this we lower the value of τ0 to
8.91 × 10−12. So instead of the values in (103) we will use the values

ε∞,0 = 6.0,
τ0 = 8.91 × 10−12,
σ = 1.5 × 10−5,
κ∞ = 4.8,
κτ = 5.0 × 10−13.

(104)

This value of τ0 has a relative error of 10% from its true value τ ∗
0 . With this new

fixed value for τ0 we attempt the inverse problem again to reconstruct ε̂s,0 and κ̂s.
These results are presented in Table 5. From Table 5 we observe that the estimated
value of κs is closer to the true value than in the previous test. Thus we can obtain
accurate estimates of κs by choosing values of τ0 that are closer to its true value. We
can conclude that if the value of τ0 is not accurately known, then the identification
of κs is difficult. The identification of εs,0 on the other hand does not appear to be
sensitive to the fixed value of τ0 that is chosen. The combined identification of both
εs,0 and κs appears to be quite insensitive to the level of relative noise that is added
to the data. The results of the Nelder-Mead run and the variation of the parameters
over all iterations are plotted in Figures 29 and 30, respectively.
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Figure 28: Nelder-Mead for the estimation of εs,0 and κs for water. The other five
parameters are fixed at the values given in (103) and relative noise of varying levels
is added to the data. 0% (–), 1% (- -) 3% (o-) and 5% (+-)
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Table 5: Parameter estimation of εs,0 and κs for 0% - 10% added relative
random noise. The values of the other five parameters are fixed at values
given in (104).

% RN Iter ε̂s,0 κ̂s |JS
n+1 − JS

0 | JS ||∇JS||L2 FC
0.0 38 80.2165 55.2945 1.5487×10−9 0.4369 0.0013 73
0.1 38 80.2165 55.2949 7.2106×10−9 0.6551 0.006310 75
0.3 39 80.2166 55.2946 5.4008×10−9 2.4674 0.005495 76
0.5 39 80.2167 55.2939 1.8372×10−9 6.1140 0.009746 76
1.0 39 80.2169 55.2914 4.5901×10−9 23.2556 0.0075 76
3.0 41 80.2173 55.2826 4.2341×10−9 206.4680 0.0087 78
5.0 40 80.2178 55.2729 8.2103×10−9 573.1135 0.0079 78
10.0 39 80.2191 55.2509 2.5361×10−9 2292.24730 0.00701 76
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Figure 29: Plots of ε̂s,0 (left) and κ̂s (right) against the number of iterations for
simulations in which the other five parameters are fixed at values that have 10%-50%
relative error from the true values as given in (104), and relative noise of varying
levels is added to the data.
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Figure 30: Nelder-Mead for the estimation of εs,0 and κs for water. The other five
parameters are fixed at the values in (104), and relative random noise of varying levels
is added to the data.
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We next attempt the inverse problem with simulated data to which we add con-
stant variance noise. We would like to compare the results of this case with the results
obtained from the inverse problem by adding relative random noise to the simulated
data. We use the notion of signal to noise ratio to make such comparisions.

6.2 Signal to noise ratio

In analog and digital communications, the signal to noise ratio, denoted as SNR,
is a measure of the signal strength relative to the background noise. The ratio is
usually measured in decibels (dB). There are many equivalent ways of defining the
SNR [JN84]. Since we assume the mean of our noise to be zero, we define the SNR
as

SNR = 10 log10

( ∑M
k=1 |E∗

k |2∑M
k=1 var(Ok − E∗

k)

)
dB, (105)

where dB denotes decibels. If the signal strength is equal to the variance of the
background noise, i.e.,

M∑

k=1

|E∗
k |2 =

M∑

k=1

var(Ok − E∗
k) (106)

then SNR = 0, and the signal is almost unreadable, as the noise level severely com-
petes with it. Ideally, the strength of the signal is greater than the variance of the
noise, so that the SNR is positive which results in the signal being readable. If the
strength of the signal is less than the variance of the noise, then the SNR is negative.
Communications engineers always strive to maximize the SNR ratio. The SNR ratio
can be increased by providing the source with a higher level of signal output power
if necessary. In wireless systems, it is always important to optimize the performance
of the transmitting and receiving antennas.

Using the notation presented in Section 5, the SNR in the cases of relative random
noise SNRR and constant variance noise SNRC are, respectively, given as

SNRR = 10 log10

( ∑M
k=1 |E∗

k |2∑M
k=1 var(νE∗

kηk)

)
dB,

SNRC = 10 log10

( ∑M
k=1 |E∗

k |2∑M
k=1 var(βηk)

)
dB

(107)

To compare the case of constant variance noise with the case of relative random noise,
we proceed as follows.

1. As noted in (79) and the discussion thereafter, we set β = να. Setting the SNR
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Table 6: Comparison of relative ran-
dom noise and constant variance noise

SNR (dB) ν % RN β = να
66 0.0005 0.1 0.0118
56 0.0015 0.3 0.0353
52 0.0025 0.5 0.0588
46 0.005 1.0 0.1175
36 0.015 3.0 0.3526
32 0.025 5.0 0.5877
26 0.05 10.0 1.1754

in the two cases to be equal i.e., SNRR = SNRC, implies

M∑

k=1

var(νE∗
kηk) = Mν2α2 =⇒ α =

√∑M
k=1 |E∗

k |2
M

. (108)

2. Thus for a given value of ν, we have β = αν and the corresponding SNR is
calculated as

SNRR ≡ SNRC = 10 log10

(∑M
k=1 |E∗

k |2
Mα2ν2

)
= 10 log10

(
1

ν2

)
. (109)

Hence, for each value of ν there is a corresponding value of β for which the SNR for
relative random noise is equivalent to the SNR for constant variance noise. In Table
6 we present the values of the SNR, β, and ν that correspond to each other in the
manner described above. For this test problem α = 23.5077.

We next attempt to identify the two parameters εs,0 and κs by adding constant
variance noise as given in (79) to our data and using the fixed values (104). The
results for the corresponding inverse problem are presented in Table 7. The results in
this case are quite different from the case of relative noise as shown in Table 5. We
can see that the estimation of κs becomes worse as the level of noise increases. The
estimation of εs,0 on the other hand is relatively stable, though it is not as accurate
as the estimate obtained in the case where relative noise is added to the data. The
estimates also become worse as the level of constant variance noise increases. In Table
7, ν corresponds to the scaling factor in (78). The constant variance case and the
relative noise case for the same value of ν have the same signal to noise ratio. Figure
31 plots the variation of ε̂s,0 and κ̂s over all iterations. As can be seen here the value
of κ̂s increases, away from the true value, as the noise level increases. Figure 32 plots
the details of the corresponding Nelder-Mead Simulation.
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Figure 31: Plots of ε̂s,0 (left) and κ̂s (right) against the number of iterations for
simulations in which the other five parameters are fixed at values that have 10%-
50% relative error from the true values as given in (104), and constant variance noise
corresponding to varying levels of relative noise is added to the data.

Table 7: Parameter estimation of εs,0 and κs for 0%-10% constant variance noise. The
other five parameters are fixed at the values given in (104)

% RN Iter ε̂s,0 κ̂s |JS
n+1 − JS

0 | JS ||∇JS||L2 FC
0.0 38 80.2165 55.2945 1.5487×10−9 0.4369 0.0013 73
0.1 38 80.2114 55.4112 8.1590 × 10−9 0.6973 0.01237 74
0.3 41 80.2012 55.6422 9.6609 × 10−9 2.8205 0.001064 77
0.5 40 80.1910 55.8728 8.1572 × 10−9 7.0804 0.0005887 77
1.0 41 80.1654 56.4531 3.1244 × 10−9 27.0778 0.007561 82
3.0 40 80.0636 58.7953 9.7228 × 10−9 240.6053 0.01135 77
5.0 39 79.9621 61.1779 7.8005 × 10−9 667.7927 0.0111 79
10.0 44 79.7084 67.3235 3.5288 × 10−10 2670.5115 0.007417 85
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Table 8: Confidence Intervals for the parameter estimation of εs,0 and κs for constant
variance noise with the Nelder-Mead algorithm.

RN = 0.0%
ε̂s,0 (8.02165 ± 1.8804 × 10−3) × 10
κ̂s (5.52945 ± 1.6448 × 10−2) × 10

RN = 0.1%
ε̂s,0 (8.02114 ± 2.3718 × 10−3) × 10
κ̂s (5.54112 ± 2.0745 × 10−2) × 10

RN = 0.3%
ε̂s,0 (8.02012 ± 4.7554 × 10−3) × 10
κ̂s (5.56422 ± 4.1583 × 10−2) × 10

RN = 0.5%
ε̂s,0 (8.01910 ± 7.5113 × 10−3) × 10
κ̂s (5.58728 ± 6.5668 × 10−2) × 10

RN = 1.0%
ε̂s,0 (8.01654 ± 1.4577 × 10−2) × 10
κ̂s (5.64531 ± 1.2738 × 10−1) × 10

RN = 3.0%
ε̂s,0 (8.00636 ± 4.2160 × 10−2) × 10
κ̂s (5.87953 ± 3.6783 × 10−1) × 10

RN = 5.0%
ε̂s,0 (7.99621 ± 6.8206 × 10−2) × 10
κ̂s (6.11779 ± 5.9447 × 10−1) × 10

RN = 10.0%
ε̂s,0 (7.97084 ± 1.2723 × 10−1) × 10
κ̂s (6.73235 ± 1.1076) × 10

We now calculate confidence intervals for the estimates that we obtained in Table
7. The procedure for calculating these intervals was outlined in Section 4.1. These
intervals are presented in Table 8 for varying levels of noise. From our earlier dis-
cussion about confidence intervals, we note that the size of the intervals is in direct
proportion to the level of uncertainty that we have about the estimates that we have
obtained. Thus, the smaller the confidence interval the more confident we are about
the estimates obtained. As we can see from Table 8 we have tighter intervals for the
estimates of εs,0 than we do for the estimates of κs, which is expected as our problem
is more sensitive to εs,0 than it is to the pressure coefficient κs. We also notice that
the intervals become larger as the level of noise that is added to the data is increased.
These intervals correspond to a 95% confidence level.
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Figure 32: Nelder-Mead for the estimation of εs,0 and κs for water. The other five
parameters are fixed at the values given in (104), and constant variance noise corre-
sponding to varying levels of relative noise is added to the data.
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Figure 33: (Top) The Least Squares Objective Function for different values of εs,0

and κs. Constant variance noise with ν = 0.005 (1% RN) is added to the data. The
other five parameters were fixed at their true values. The minimum for this plot is
located at the point (80.099, 49.0212), with a minimum value of 26.712. (Bottom)
Cross sections of the Least Squares Objective function versus κs (left) and versus εs,0

(right).
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Figure 34: (Top) The Least Squares Objective Function for different values of εs,0 and
κs. Constant variance noise with ν = 0.005 (1% RN) is added to the data. The other
five parameters were fixed at the values given in (104). The minimum is located at the
point (80.099, 56.7108), with a minimum value of 27.0837. (Bottom) Cross sections
of the Least Squares Objective function versus κs (left) and versus εs,0 (right).
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Figure 35: Plot of the Least Squares residual versus time in the case of 10% relative
random noise added to the data.

In Figure 33 we plot the least squares objective function for values of ε̂s,0 that
have up to 5% relative error from the true values, and values of κ̂s that have up to
20% relative error from the true values. The other five parameters were fixed at their
true values in the case of the top plot in Figure 33 and at the values (104) in the case
of the bottom plot, respectively. In Figure 34 the top and bottom plots show the
the cross sections of the objective function against ε̂s,0, and κ̂s across the minimum
with respect to the other variable, for the surface plots in Figure 33. Comparing with
Figure 25 we observe that the minimum value of κ̂s has moved away from its true
value.

In Figures 35 we plot the least squares residual versus time in the case when 10%
relative random noise is added to the data. A magnified plot of the least squares
residual versus time in the interval where the acoustic reflection is observed is plotted
in Figure 36. Finally we plot the least squares residual versus the absolute value
of the electric field data in Figure 37 again in the case where 10% relative random
noise is added to the data. We notice in this figure that the amount of noise increases
as the absolute value of the electric field data magnitude increases. This is in direct
contrast to the case when constant variance noise is added to the simulated data. We
plot analogous plots of the least squares residual for 10% added constant variance
noise in Figures 38 and 39. Comparing Figures 38 and 35 we note the lack of any
patterns in the residual in Figure 38 for the case of added constant variance noise;
whereas in Figure 35, the residual follows the peaks in the simulated data used in
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Figure 36: A magnified plot of the Least Squares residual versus time in the interval
where the acoustic reflection is observed, for the case of 10% relative random noise
added to the data.
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Figure 37: Plot of the Least Squares residual versus the absolute value of the electric
field data for the case of 10% relative random noise added to the data.
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Figure 38: Plot of the Least Squares residual versus time for the case of constant
variance noise added to the simulated data.

the inverse problem. Again in Figure 37 we note the fan like structure of the residual
with the residual increasing with the absoulte value of the electric field. In the case
of added constant variance noise, however, we again note the lack of a pattern in
the residual as seen in Figure 39. We also observe that there are many points of the
residual on the line Ex = 0. This is beacuse in the simulated data, the electric field
magnitude is almost zero most of the time. We compare the simulated data with
added relative random noise and added constant variance noise in Figures 40-43. We
notice in Figure 43 that the acoustic reflection is drowned by the constant variance
noise with ν = 0.05 (10% RN), which is not the case with the relative random noise
data for the same value of ν. Thus the identification of κs is more difficult with
constant variance noise added to the simulated data.

We next attempt the identification of three parameters, namely εs,0, τ0 and κs. The
other four parameters, ε∞,0, σ, κ∞ and κτ are fixed at values given in (104). Tables 9
and 10 present the final estimates and the details of the corresponding Nelder-Mead
simulation. We observe that the final estimates for both τ0 and κs start to increase
away from their true values as the level of constant variance noise is increased. The
plots of the least squares objective function presented before provide an explanation
for this. In Figures 45-44 we plot the variation of the three parameters over all
iterations in the Nelder-Mead simulation. In each of these figures the dashed line
represents the true value of the corresponding parameter. Again, we observe that
the estimates for εs,0 are stable with respect to the level of constant variance noise,
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Figure 39: Plot of the Least Squares residual versus the absolute value of the electric
field for the case of constant variance noise added to the simulated data.

however, the estimates for τ0 and κs increase as the value of ν is increased.

Table 9: Parameter estimation of εs,0 and τ0 and κs for
constant variance noise, corresponding to varying levels
of relative noise with the Nelder-Mead algorithm.

% RN Iter ε̂s,0 τ̂0(×10−12) κ̂s

0.0 78 80.1069 8.1543 48.2026
0.1 81 80.1033 8.1627 48.3386
0.3 75 80.0959 8.1768 48.6725
0.5 81 80.0890 8.1919 48.9905
1.0 90 80.0745 8.2242 49.8265
3.0 79 80.0076 8.3635 53.1810
5.0 99 79.9315 8.5015 56.7926
10.0 83 79.7087 8.8299 66.2803
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Figure 40: Comparison of the data with added relative random noise to the data with
constant variance noise added. The value of ν in both the cases is ν = 0.05 (10%
RN).
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Figure 41: Comparison of the data with added relative random noise to the data with
constant variance noise added for the input signal at the center of the antenna. The
value of ν in both the cases is ν = 0.05 (10% RN).

66



1 1.5 2

x 10−9

−50

−40

−30

−20

−10

0

10

20

30

40

50

Time (sec)

E
le

ct
ic

 F
ie

ld
 D

at
a 

(V
ol

ts
/M

et
er

)

Data with Constant Variance Noise
Data with Relative Random Noise

Figure 42: Comparison of the data with added relative random noise to the data with
constant variance noise added for the first reflection from the air-Debye interface. The
value of ν in both the cases is ν = 0.05 (10% RN).
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Figure 43: Comparison of the data with added relative random noise to the data with
constant variance noise added for the reflection from the acoustic wave region. The
value of ν in both the cases is ν = 0.05 (10% RN).
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Figure 44: Estimation of εs,0 by the Nelder-Mead algorithm. We plot the variation
of ε̂s,0 with the iteration count.

Table 10: Parameter estimation of εs,0 and τ0 and κs for
constant variance noise, corresponding to varying levels
of relative noise with the Nelder-Mead algorithm.

% RN ||∇JS||L2 FC |JS
n+1 − JS

0 | JS

0.0 0.008942 140 8.02867×10−9 4.4391×10−5

0.1 0.00224 144 4.3059×10−9 0.2672
0.3 0.00499 136 5.9737×10−9 2.4039
0.5 0.0139 150 3.5686×10−9 6.6771
1.0 0.001414 161 8.5522×10−9 26.7071
3.0 0.0277 147 9.0774×10−9 240.3553
5.0 0.007697 181 6.7874×10−9 667.6441
10.0 0.001432 154 6.2983×10−9 2670.5056

In the case of the estimation of three parameters we observe that the estimates
of κs are more accurate when τ0 is allowed to vary as opposed to the case of two
parameter estimation when τ0 is fixed at a particular value. Varying τ0, however,
does not seem to make much difference in estimating εs,0. Also, comparing the in-
tervals in Tables 8 and 11 we find that we obtain tighter confidence intervals for the
three parameter case as opposed to the two parameter case, for the same level of
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Figure 45: Estimation of κs by the Nelder-Mead algorithm. We plot the variation of
κ̂s with the iteration count.
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Figure 46: Estimation of τ0 by the Nelder-Mead algorithm. We plot the variation of
τ̂0 with the iteration count.
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Table 11: Confidence Intervals for the parameter esti-
mation of εs,0,τ0 and κs for constant variance noise with
the Nelder-Mead algorithm.

RN 0.0%
ε̂s,0 (8.01069 ± 1.8738 × 10−5) × 10
τ̂0 (8.1543 ± 2.3240 × 10−4) × 10−12

κ̂s (4.82026 ± 2.6832 × 10−4) × 10
RN 0.1%
ε̂s,0 (8.01033 ± 1.4526 × 10−3) × 10
τ̂0 (8.1627 ± 1.8004 × 10−2) × 10−12

κ̂s (4.83386 ± 2.0798 × 10−2) × 10
RN 0.3%
ε̂s,0 (8.00959 ± 4.3438 × 10−3) × 10
τ̂0 (8.1768 ± 5.3824 × 10−2) × 10−12

κ̂s (4.86725 ± 6.2220 × 10−2) × 10
RN 0.5%
ε̂s,0 (8.00890 ± 7.2206 × 10−3) × 10
τ̂0 (8.1919 ± 8.9417 × 10−2) × 10−12

κ̂s (4.89905 ± 1.0345 × 10−1) × 10
RN 1.0%
ε̂s,0 (8.00745 ± 1.4327 × 10−2) × 10
τ̂0 (8.2242 ± 1.7739 × 10−1) × 10−12

κ̂s (4.98265 ± 2.0555 × 10−1) × 10
RN 3.0%
ε̂s,0 (8.00076 ± 4.1809 × 10−2) × 10
τ̂0 (8.3635 ± 5.1532 × 10−1) × 10−12

κ̂s (5.31810 ± 6.0160 × 10−1) × 10
RN 5.0%
ε̂s,0 (7.99315 ± 6.7761 × 10−2) × 10
τ̂0 (8.5015 ± 8.3067 × 10−1) × 10−12

κ̂s (5.67926 ± 9.7751 × 10−1) × 10
RN 10.0%
ε̂s,0 (7.97087 ± 1.2738 × 10−1) × 10
τ̂0 (8.8299 ± 1.5286) × 10−12

κ̂s (6.62803 ± 1.8366) × 10
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added noise. The reason for this again is most likely the dependence of the acous-
tic reflections on the value of τ0. Thus, the algorithm for the inverse problem can
choose τ0 appropriately so that the value of κ̂s is minimized. As before, estimates for
all three parameters become worse as the level of noise added is increased and the
corresponding confidence intervals become larger as seen in Table 11.

In Figure 47 we plot the details of the Nelder-Mead simulation for the identification
of the three parameters εs,0, τ0 and κs. In Figure 48 we plot the least squares objective
function for values of τ0 and κ̂s that differ from the true values by up to 10%, in
the case of added constant variance noise with ν = 0.05 (10% RN). The other five
parameters are fixed at the values given in (104) with εs,0 fixed at the value 73.1. We
observe that the minimum has moved away from the true values. The fact that the
acoustic reflection is overshadowed by the constant variance noise as shown in Figure
43 explains this behaviour of the objective function.

6.3 Simulation Results: The Levenberg-Marquardt method

We now repeat our inverse problem with a different least squares optimization tech-
nique. The Nelder Mead method presented in the previous section is a gradient free
method based on the use of simplices. We will now use a gradient based method,
namely the Levenberg-Marquardt method to solve our inverse problem. For the
overdetermined least squares objective function

JS(q) =
1

2

M∑

k=1

|Ex(tk, 0, zc;q) − Os
k|2 =

1

2
R(q)T R(q), (110)

Levenberg-Marquardt, which is a trust region method, adds a regularization param-
eter νLM > 0 to the approximate Hessian of the Gauss-Newton method to obtain a
new estimate qc = qc + s, where

s = −
(
νLMI + R′(qc)

T R′(qc)
)−1

R′(qc)
T R(qc), (111)

with qc, the current estimate and I the l× l identity matrix, where l is the number of
parameters that we are attempting to estimate. The matrix

(
νLMI + R′(qc)

T R′(qc)
)

is positive definite. The parameter νLM is called the Levenberg-Marquardt parameter.
For details of this implementation of the Levenberg-Marquardt method we refer the
reader to [Kel99].

As with Nelder-Mead, we first attempt the identification of all the seven parame-
ters, then we identify εs,0 and κs and finally we attempt the identification of εs,0, τ0

and κs. Figures 49-50 plot the final estimates for all the seven parameters and the
details of the Levenberg-Marquardt simulation. The dashed lines here represent the
true values of the corresponding parameter. Tables 12 and 13 present the results for
the inverse problem of identifying the seven parameters. We observe how close the
final estimates of the parameters here are with those computed by Nelder-Mead. We
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Figure 47: Nelder-Mead for the three parameter estimation problem for varying levels
of constant variance noise.
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Figure 49: Levenberg-Marquardt for the seven parameter estimation problem
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Figure 50: Estimation of εs,0, τ0 and κs by the Levenberg-Marquardt algorithm. We
plot the variation of the three parameters with the iteration count.
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Table 12: Final estimates for all seven parameters for water using Levenberg-
Marquardt. The initial parameter set has values that are 5% smaller than the true
values.

Parameter True Values Final Estimates
εs,0 80.1 80.0917
ε∞,0 5.5 5.2039
τ0 8.1e − 12 8.0666 × 10−12

σ 1.0 × 10−5 9.5 × 10−6

κ̂s 48.06 48.0028
κ∞ 4.4 4.1786
κτ 4.05 × 10−13 3.8462 × 10−13

Table 13: Status of the Levenberg-
Marquardt Simulation at the final it-
eration.

Least squares value 1.0584 × 10−5

L2 norm of the gradient 5.7248 × 10−4

Number of forward solves 31
Number of gradient evaluations 16
Number of hessian evaluations 30

can again make similar conclusions as we did in the case of the Nelder-Mead results.
Only εs,0, τ0 and κs seem to be identifiable with some accuracy, whereas the problem
appears to be insensitive to changes in the other four parameters. We next attempt
the identification of εs,0 and κs with simulated data in which constant variance noise
is added. The values of the remaining five parameters are fixed at those in (104).
Tables 14 and 15 present the final estimates and the details of the corresponding LM
simulation. In Figures 52 and 53 we plot the details of the LM run as well as the
variation of ε̂s,0 and κ̂s over all iterations. The confidence intervals for these estimates
are presented in Table 16. Again, we can make similar remarks and observations as
in the case of the results of the Nelder-Mead method.

Finally we attempt to identify the three parameters εs,0, τ0 and κs. Figures 55 and
54 plot the details of the LM simulation and the variation of the parameters over all
iterations. Tables 17 and 18 present the final estimates and details of the algorithm.
Again, as was observed in the results of the Nelder-Mead runs, the estimates for κs

are better when the value of τ0 is kept variable as opposed to fixing the value of τ0.
Thus, the inverse problem captures κs more accurately if the value of τ0 is allowed to
change. In Table 19 we present the confidence intervals for the three parameter
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Table 14: Parameter estimation of εs,0 and κs for constant variance noise, correspond-
ing to varying levels of relative noise with the Levenberg-Marquardt algorithm.

% RN Iter ε̂s,0 κ̂s JS ||∇JS||L2

0.0 18 80.2166 55.2951 0.4369 0.0006526
0.5 18 80.191 55.8726 7.0804 0.0071
1.0 18 80.1654 56.4524 27.0778 0.00076
3.0 18 80.0636 58.7948 240.6053 0.001068
5.0 18 79.9621 61.1765 667.7927 0.001385
10.0 19 79.7084 67.3217 2670.5115 0.001417

Table 15: Parameter estimation of εs,0 and κs for constant variance noise, correspond-
ing to varying levels of relative noise with the Levenberg-Marquardt algorithm.

% RN Iter JS ||∇JS||L2 F G H
0.0 18 0.4369 0.0006526 37 19 36
0.5 18 7.0804 0.0071 37 19 36
1.0 18 27.0778 0.00076 37 19 36
3.0 18 240.6053 0.001068 37 19 36
5.0 18 667.7927 0.001385 37 19 36
10.0 19 2670.5115 0.001417 39 20 38
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Figure 52: Levenberg-Marquardt for the two parameter estimation problem. Varia-
tion of ε̂s,0 (left) and κ̂s (right) over the iteration count.
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Table 16: Confidence Intervals for the parameter estimation of εs,0 and κs for constant
variance noise with the Levenberg-Marquardt algorithm.

RN = 0.0%
ε̂s,0 (8.02166 ± 1.8803 × 10−3) × 10
κ̂s (5.52951 ± 1.6448 × 10−2) × 10

RN = 0.5%
ε̂s,0 (8.01910 ± 7.5113 × 10−3) × 10
κ̂s (5.58726 ± 6.5668 × 10−2) × 10

RN = 1.0%
ε̂s,0 (8.01654 ± 1.4577 × 10−2) × 10
κ̂s (5.64524 ± 1.2738 × 10−1) × 10

RN = 3.0%
ε̂s,0 (8.00636 ± 4.2160 × 10−2) × 10
κ̂s (5.87948 ± 3.6783 × 10−1) × 10

RN = 5.0%
ε̂s,0 (7.99621 ± 6.8206 × 10−2) × 10
κ̂s (6.11765 ± 5.9447 × 10−1) × 10

RN = 10.0%
ε̂s,0 (7.97084 ± 1.2723 × 10−1) × 10
κ̂s (6.73217 ± 1.1076) × 10
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Figure 53: Estimation of εs,0 and κs by the Levenberg-Marquardt algorithm for vary-
ing levels of constant variance noise. Details of the LM simulation.
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Figure 54: Estimation of εs,0, τ0 and κs by the Levenberg-Marquardt algorithm with
varying levels of added constant variance noise. We plot the variation of the three
parameters with the iteration count.
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Figure 55: Levenberg-Marquardt for the three parameter estimation problem with
varying levels of added constant variance noise. Details of the LM simulation.
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Table 17: Parameter estimation of εs,0 and τ0 and κs for constant variance noise,
corresponding to varying levels of relative noise with the Levenberg-Marquardt algo-
rithm.

% RN Iter ε̂s,0 τ̂0(×10−12) κ̂s JS ||∇JS||L2

0.0 17 80.1083 8.1562 48.2113 4.4383×10−5 0.0009637
1.0 17 80.0765 8.2247 49.8060 26.7071 0.001371
3.0 18 80.0079 8.3618 53.1392 240.3553 0.001345
5.0 19 79.9320 8.4983 56.6654 667.6441 0.0008044
10.0 20 79.7085 8.8330 66.3476 2670.5056 0.001268

Table 18: Parameter estimation of εs,0 and τ0 and
κs for constant variance noise, corresponding to
varying levels of relative noise with the Levenberg-
Marquardt algorithm.

% RN Iter JS ||∇JS||L2 F G H
0.0 17 4.4383×10−5 0.0009637 35 18 34
1.0 17 26.7071 0.001371 35 18 34
3.0 19 240.3553 0.001345 37 19 36
5.0 19 667.6441 0.0008044 39 20 38
10.0 20 2670.5056 0.001268 41 21 40
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Table 19: Confidence Intervals for the parameter esti-
mation of εs,0,τ0 and κs for constant variance noise with
the Levenberg-Marquardt algorithm.

RN 0.0%
ε̂s,0 (8.01083 ± 1.8741 × 10−5) × 10
τ̂0 (8.1562 ± 2.3234 × 10−4) × 10−12

κ̂s (4.82113 ± 2.6830 × 10−4) × 10
RN 1.0%
ε̂s,0 (8.00765 ± 1.4334 × 10−2) × 10
τ̂0 (8.2247 ± 1.7742 × 10−1) × 10−12

κ̂s (4.98060 ± 2.0560 × 10−1) × 10
RN 3.0%
ε̂s,0 (8.00079 ± 4.1822 × 10−2) × 10
τ̂0 (8.3618 ± 5.1552 × 10−1) × 10−12

κ̂s (5.31392 ± 6.0178 × 10−1) × 10
RN 5.0%
ε̂s,0 (7.99320 ± 6.7841 × 10−2) × 10
τ̂0 (8.4983 ± 8.3159 × 10−1) × 10−12

κ̂s (5.66654 ± 9.7843 × 10−1) × 10
RN 10.0%
ε̂s,0 (7.97085 ± 1.2736 × 10−1) × 10
τ̂0 (8.8330 ± 1.5277) × 10−12

κ̂s (6.63476 ± 1.8360) × 10

estimation problem.

7 A second test case

In this section we consider the parameter estimation for a Debye medium with a larger
relaxation time than the value that was considered in the first test problem. We would
like to study the effect of the relaxation time τ and the interrogation frequency ωc on
the ability of the electromagnetic pulse to penetrate the dielectric material. As shown
in [BBL00] a very small relaxation time, such as that for water τ ∗

0 = 8.1× 10−12, will
make the material appear comparatively “hard” in the sense that it will allow much
less of the signal to penetrate the air-Debye interface at z = z1 for a sufficiently high
interrogation frequency like ωc = π × 1010 rad/sec. This small transmitted wave can
only generate very little, if any, reflection at the second interface as it enters the
region containing the pressure wave. This demonstrates the importance of the choice
of the carrier frequency ωc for effective interrogation. In [BBL00] the authors have
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demonstrated the strong influence of the dielectric relaxation time on an appropriate
choice of the interrogating frequency for successfully penetrating the material. In this
second test case we consider a parameter estimation problem for a Debye medium with
a relaxation time τ ∗

0 = 3.16×10−8 (as used in [BBL00, ABR02]), and an interrogation
frequency ωc = π × 1010 rad/sec.

As observed in Section (4.1), the product ωcτ0 strongly determines the parameters
in the problem that can be identified accurately. We will observe that by changing
the values of τ0 and ωc in this second test problem, the parameters that dominate in
the term ε∗r in (74) are no longer the same as those of the first test problem, i.e., ε∗s,0
and κ∗

s. As will be demonstrated in Section (7.2), the parameters whose magnitude
dominates the quantity ε∗r are ε∗∞,0 and the pressure coefficient κ∗

∞.
The data that we will attempt to fit is generated with a Debye model which is

defined by the parameter values

ε∗s,0 = 78.2

ε∗∞,0 = 5.5

τ ∗
0 = 3.16 × 10−8

σ∗ = 1 × 10−5

κ∗
τ = 0.05τ ∗

0 = 1.58 × 10−9

κ∗
s = 0.6ε∗s,0 = 46.92

κ∗
∞ = 0.3ε∗∞,0 = 1.65.

(112)

In this model, the value of τ ∗
0 is much higher than in the case of the first test problem.

As will be seen in the sequel, this value of τ ∗
0 leads to a parameter estimation problem

with very different properties.

7.1 The forward problem: Simulation results

We perform similar numerical simulations, as were done for the first test problem,
to collect simulated data at the center of the antenna and to demonstrate the effect
of the acoustic pressure on the electric field. We would like to know how and to
what extent the acoustic pressure can change the reflected electric wave from the
interface at z = z2. In Figure 56 we plot the electromagnetic source that is used in
our simulations. The form for the source is

Js(t, x, z) = I(x1,x2)δ(z) sin(ωc(t − 3t0)) exp

(
−
[
t − 3t0

t0

]2
)

x̂,

t0 =
1

π × 109
; ωc = π × 1010 rad/sec; fc = 5.0 × 109 Hz.

(113)

where I(x1,x2) is the Indicator function on (x1, x2). The Fourier spectrum of this pulse
has even symmetry about 5.0 GHz. In Figure 57 we plot the power spectral density
of the source defined in (113). We see that the power spectral density is symmetric
about 5.0 GHz.

The computational domain is defined as follows. We take X0 = (0, 0.12), Za =
(0, 0.33) and ZD = (0.33, 0.5). The number of nodes along the z-axis is taken to be 450
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and the number of nodes along the x-axis is taken to be 108. The spatial step size in
both the x and z directions is ∆x = ∆z = h = 0.06/54. From the CFL condition (55)
with the Courant number ηCN = 1/2 we obtain the time increment to be ∆t ≈ 1.852
pico seconds. The central frequency of the input source as described in (54) is 5.0 GHz
and thus the wavelength is 0.06 meters. The antenna is half a wavelength long and is
placed at (x1, x2)×zc, with zc = 0, x1 = 0.03 and x2 = 0.09. We use PML layers that
are half a wavelength thick on all fours sides of the computational domain as shown
in Figure 3. The reflections of the electromagnetic pulse at the air-Debye interface
and from the acoustic pressure wave are recorded at the center of the antenna (xc, zc),
with xc = 0.06, at every time step. This data will be used as observations for the
parameter identification problem to be presented later. The component of the electric
field that is of interest here is the Ex component. Thus our data is the set

E(q∗) = {Ex(t = n∆t, xc, zc;q
∗)}M

n=1

q∗ = (ε∗s,0, ε
∗
∞,0, τ

∗
0 , σ∗, κ∗

s, κ
∗
∞, κ∗

τ )
T .

(114)

The windowed acoustic pressure wave as defined in (49) has the parameter values
ωp = 4.0π × 104 rad/sec, cp = 667.67 m/s, and thus, λp = 0.033. The location of the
pressure region is in the interval (z2, z2 + λp) = (0.44, 0.47).

In Figures 58 -61 we plot the Ex field magnitude in the plane containing the center
of the antenna versus depth along the z axis. Figure 58 depicts the electromagnetic
wave penetrating the Debye medium. In 59 we see the reflection of the electromagnetic
wave from the Debye medium moving towards the antenna and the Brillouin precursor
propagating in the Debye medium. In Figure 60 we observe the reflection from the
region containing the acoustic pressure moving towards the air-Debye interface and
the transmitted part of the electromagnetic source travelling into the absorbing layer.
The reflection from the acoustic pressure crosses the air-Debye interface in Figure 61.
Here we see another reflected wave from the air-Debye interface that moves towards
the right. In Figures 62 and 63 we plot the Ex field magnitude recorded at the center
of the antenna versus time, which shows the electromagnetic source, the reflection
off the air-Debye interface and the reflection from the region containing the acoustic
pressure wave. As seen here the magnitude of the reflection from the acoustic pressure
is many orders of magnitude smaller that the initial electromagnetic source as well
the reflection from the air-Debye interface.

7.2 Sensitivity analysis

Here we examine the system dynamics as the parameters vary. We are interested in
the changes produced by the coefficents of pressure in the polarization, namely the
parameters κs, κ∞ and κτ . In Figure 65 we plot the difference in the Ex component
of the electric field between the simulation with parameter values given in (112)
and simulations for which the value of κ∞ is 0, 0.4ε∞,0 and 0.5ε∞,0. As expected
the difference is seen in the acoustic reflection that is observed at the center of the
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Figure 56: Forward Simulation for a Debye medium with parameters given in (112).
The input electromagnetic source as defined in (113).

antenna. In Figure 66 we plot the difference in the Ex component of the electric
field between the simulation with parameter values given in (112) and simulations for
which the value of κs is 0, and 0.3εs,0. In Figure 67 we plot the difference in the Ex

component of the electric field between the simulation with parameter values given in
(112) and simulations for which the value of κτ is 0 and 0.1εs,0. Again, in both cases
the difference is seen in the acoustic reflection that is observed at the center of the
antenna. We observe that the difference in the Ex field in the case of Figures 66 and
67 is one or two orders of magnitude smaller than that in Figure 65. This indicates
that the coefficent that is most significant for this test problem and which will be
estimated more accurately than the others is κ∞, the pressure coefficient in ε∞. In
the first test problem κs, the pressure coefficient in εs was the most significant. So
we see a very different behaviour of the acoustic reflection in this case.

This observation, as was done for the first test problem, can also be deduced from
an analysis of (40). In the simulations for this test problem the outgoing and reflected
radiation will be dominated by frequencies near the center frequency 5.0 GHz. Thus,
ε∗r will be dominated by frequencies near 5.0 GHz. In this problem ωτ ∗

0 ≈ O(102),
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Figure 57: Fourier transform of the source defined in (113). The transform is centered
around the central frequency of ω = π × 1010 rad/sec.

and with ε0 = 8 × 10−12 we have (compare with the estimates of (75))

(
ε∗s,0

1 + jωτ ∗
0

)
≈ O(10−2ε∗s,0) ≈ O(10−1),

(
jωτ ∗

0

1 + jωτ ∗
0

)
ε∗∞,0 ≈ O(ε∗∞,0) ≈ O(10),

(
σ∗

jωε0

)
≈ O(103σ∗) ≈ O(10−3).

(115)

Thus we can see that ε∗r will be most sensitive to the infinite frequency permittivity
ε∞,0 and the effects of εs,0 and τ0 and σ will not be as pronounced. Also, this implies
that ε∗r will be more sensitive to the pressure coefficient κ∞ than to the coefficients
κs and κτ , which is the same observation that was made from Figures 65, 66 and 67

We next study the effect that the acoustic speed and frequency have on the am-
plitude of the reflection from the acoustic pressure region as was done in the first
test problem. In Figure 68 we plot the acoustic reflection observed at the center of
the antenna for different values of the acoustic frequency and in Figure 69 we plot
the acoustic reflection for different values of the acoustic speed. As noted before, by
changing the speed or the frequency, the wavelength λp changes and thus the size
of the interval (z2, z2 + λp) in which the pressure wave is generated. The amplitude
of the acoustic reflection appears to increase as the acoustic frequency is increased
and decreases as the acoustic speed increases, the opposite behaviour to what was
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Figure 58: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude along the plane containing the center of the antenna versus
depth. We see here the electromagnetic source penetrating the Debye medium.
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Figure 59: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude along the plane containing the center of the antenna versus
depth. The plot shows the reflection of the electromagnetic source off the air-Debye
interface travelling towards the antenna. We also see the brillouin precursor propa-
gating inside the Debye medium.
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Figure 60: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude along the plane containing the center of the antenna versus
depth. Here we see the reflection from the acoustic pressure wave moving towards
the left.
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Figure 61: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude along the plane containing the center of the antenna. The
reflection from the acoustic pressure wave crosses the air-Debye interface. A secondary
reflection off this interface travels towards the right.
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Figure 62: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude versus time. We see three sets of observations. The electro-
magnetic source, the reflection off the air-Debye interface and the relection from the
acoustic pressure wave.
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Figure 63: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude versus time. Here we magnify the two sets of reflections, one
from the air-Debye interface and from the acoustic pressure wave.
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Figure 64: Fourier transform of the electric field data in Figure 62. The transform is
centered around the central frequency of ω = 10π × 109.
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Figure 65: Forward Simulation for a Debye medium with parameters given in (112).
The Ex field magnitude measured at the center of the antenna for different values of
κ∞.

89



0 1 2 3 4 5 6

x 10−9

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time t (secs)

D
iff

er
en

ce
 in

 E
x F

ie
ld

 M
ag

ni
tu

de

κ
s
 = 0.6ε

s,0
 , κ

s
 = 0

κ
s
 = 0.6ε

s,0
  , κ

s
 = 0.3ε

s,0

Figure 66: Difference in the Ex field magnitude measured at the center of the antenna
between the simulation for parameters given in (112) and simulations with different
values of κs.

observed in the first test problem. We note here again that as our windowed pressure
wave contains only one wavelength of the sinusoid it is difficult to predict how the
reflections will behave as the speed or the frequency is changed.

7.3 Simulation results for the inverse problem: The Leven-

berg Marquardt method

In this section we present results for the inverse problem of parameter estimation for
the second test problem. We do this first with the Levenberg-Marquardt algorithm
and later with the Nelder-Mead method. We first attempt to estimate the three
parameters ε∞,0, τ0 and the pressure coefficient κ∞, of ε∞. The values of the remaining
parameters are fixed at

ε∗s,0 = 71.09 (relative static permittivity),

ε∗∞,0 = 5.5 (relative high frequency permittivity),

τ ∗
0 = 3.48 × 10−8 seconds,

σ∗ = 1.5 × 10−5 (mhos/meter),

(116)
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Figure 67: Difference in the Ex field magnitude measured at the center of the antenna
between the simulation for parameters given in (112) and simulations with different
values of κτ .

κ∗
s = 42.654 (pressure coefficient in ε∗s),

κ∗
∞ = 1.65 (pressure coefficient in ε∗∞),

κ∗
τ = 1.74 × 10−9 (pressure coefficient in τ ∗).

(117)

The results are tabulated in Tables 20 and 21 and presented in Figures 70-73. We
have added constant variance noise with different values of the scale parameter ν to
the data. We note from Table 20 that the estimation of ε∞,0 is relatively stable over
all values of ν that we have selected; whereas the estimation of κ∞ becomes inaccurate
as the value of ν is increased. Unlike the previous test problem, the estimation of τ0 in
this case is not good. Table 21 presents the number of function, gradient and hessian
evaluations that are required for the algorithm to converge, where the convergence
criteria used here is ||∇JS

k ||/||∇JS
0 || < 10−6.

In Table 22 we present the confidence intervals for the three parameter estimation
problem with results tabulated in Table 20. Again, we note that the confidence
intervals become larger as the level of noise increases. From Table 22 we observe that
the confidence level in the estimates ε̂∞ and κ̂∞ is higher than the confidence level in
τ̂0, as is also observed from the final estimates for τ0.

We now attempt to estimate the two parameters ε∞,0 and its pressure coefficient
κ∞. We fix the value of the relaxation time τ0 to be

τ0 = 3.48 × 10−8. (118)
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Figure 68: Plot of the magnitude of the acoustic reflection against time for different
values of the acoustic frequency. The other parameters are fixed at their true values
given in (112).
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time for different values of the acoustic speed. The other parameters are fixed at their
true values given in (112).

93



Table 20: Parameter estimation of ε∞,0, τ0 and κ∞ for constant variance noise, corre-
sponding to varying levels of relative noise with the Levenberg-Marquardt algorithm.

% RN Iter ε̂∞,0 τ̂0 κ̂∞ JS ||∇JS||L2

0.0 32 5.4999 2.8522 × 10−8 1.6496 2.1605 × 10−6 0.0002746
0.1 32 5.4998 2.8761 × 10−8 1.6463 0.2749 0.0002723
0.3 32 5.4996 2.9253 × 10−8 1.6395 2.4743 0.0003417
0.5 32 5.4993 2.9764 × 10−8 1.6328 6.8730 0.0004703
1.0 34 5.4985 3.1135 × 10−8 1.6160 27.4921 0.0002261
3.0 39 5.4956 3.8493 × 10−8 1.5467 247.4282 0.0002441
5.0 45 5.4926 5.1264 × 10−8 1.4753 687.2987 0.0003073
10.0 57 5.4852 4.1950 × 10−7 1.2957 2749.1770 0.00007404

Table 21: Parameter estimation of ε∞,0, τ0 and κ∞ for constant variance noise, corre-
sponding to varying levels of relative noise with the Levenberg-Marquardt algorithm.

% RN Iter JS ||∇JS||L2 F G H
0.0 32 2.1605 × 10−6 0.0002746 71 33 70
0.1 32 0.2749 0.0002723 71 33 70
0.3 32 2.4743 0.0003417 71 33 70
0.5 32 6.8730 0.0004703 71 33 70
1.0 34 27.4921 0.0002261 76 35 75
3.0 39 247.4282 0.0002441 86 40 85
5.0 32 687.2987 0.0003073 98 46 97
10.0 57 2749.1770 0.00007404 136 58 135
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Figure 70: Parameter estimation of ε∞,0, τ0 and κ∞ using the Levenberg-Marquardt
algorithm with added constant variance noise for various values of ν.

0 10 20 30 40 50 60
5.1

5.3

5.5

5.7

5.9

6.1

Iterations

ε ∞
,0

^

ε
∞,0
*  = 5.5

Figure 71: Levenberg-Marquardt for the three parameter estimation problem with
added constant variance noise. Variation of the estimate ε̂∞,0 with the iteration
count.
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Table 22: Confidence Intervals for the parameter estima-
tion of ε∞,0, τ0 and κ∞ with the Levenberg-Marquardt
algorithm for varying levels of constant variance noise
corresponding to 0%-10% relative noise.

RN = 0.0%
ε̂∞,0 5.4999 ± 9.8421 × 10−7

τ̂0 (2.8522 ± 1.9957 × 10−4) × 10−8

κ̂∞ 1.6496 ± 2.8669 × 10−5

RN = 0.1%
ε̂∞,0 5.4998 ± 3.5104 × 10−4

τ̂0 (2.8761 ± 7.1807 × 10−2) × 10−8

κ̂∞ 1.6463 ± 1.0238 × 10−2

RN = 0.3%
ε̂∞,0 5.4996 ± 1.0531 × 10−3

τ̂0 (2.9253 ± 2.1927 × 10−1) × 10−8

κ̂∞ 1.6395 ± 3.0784 × 10−2

RN = 0.5%
ε̂∞,0 5.4993 ± 1.7548 × 10−3

τ̂0 (2.9764 ± 3.7209 × 10−1) × 10−8

κ̂∞ 1.6328 ± 5.1417 × 10−2

RN = 1.0%
ε̂∞,0 5.4985 ± 3.5076 × 10−3

τ̂0 (3.1135 ± 7.7975 × 10−1) × 10−8

κ̂∞ 1.6160 ± 1.0340 × 10−1

RN = 3.0%
ε̂∞,0 5.4956 ± 1.0504 × 10−2

τ̂0 (3.8493 ± 2.9130) × 10−8

κ̂∞ 1.5467 ± 3.1752 × 10−1

RN = 5.0%
ε̂∞,0 5.4926 ± 1.7460 × 10−2

τ̂0 (5.1264 ± 6.5133) × 10−8

κ̂∞ 1.4753 ± 5.4261 × 10−1

RN = 10.0%
ε̂∞,0 5.4852 ± 3.4394 × 10−2

τ̂0 (4.1950 ± 10.3835) × 10−8

κ̂∞ 1.2957 ± 11.5944 × 10−1
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Figure 73: Levenberg-Marquardt for the three parameter estimation problem with
added constant variance noise. We plot the variation of the estimate κ̂∞ with the
iteration count.

In Figures 74and 75 we plot the two parameter estimation inverse problem with no
added noise to the simulated data. In Figures 76 and 77 we plot the two parameter
estimation inverse problem with added constant variance noise to the simulated data.
In Tables 23 and 24 we present the final estimates and details of the Levenberg-
Marquardt simulations with varying levels of constant variance noise added to the
data that is to be fit. In Table 25 we calculate the confidence intervals for the
two parameter estimation problem of estimating ε∞,0 and κ∞ with added constant
variance noise to the simulated data. In Figure 78 we plot the least squares
objective function for different values of ε∞,0 and κ∞. There is no noise added to the
data for these plots. The other five parameters are fixed at their true values as given
in (112). We see possibilities of local minima in these plots. This test problem has
many local minima whose evidence will be seen clearly in later plots. In Figure 79 we
plot the least squares objective function for various values of the two parameters ε∞,0

and κ∞. Again we have not added any noise to the data for these plots. The other
five parameters were fixed at values given in (116) and (117) except for τ0 which was
fixed at its true value as given in (112).
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Figure 74: Parameter estimation of ε∞,0 and κ∞ with no added noise using the
Levenberg-Marquardt algorithm. The plot shows the details of the Levenberg-
Marquardt algorithm.
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Figure 75: Levenberg-Marquardt for the two parameter estimation problem with no
added noise. We plot the variation of ε̂∞,0 (left) and κ̂∞ (right) versus the iteration
count.
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Figure 76: Parameter estimation of ε∞,0 and κ∞ with the Levenberg-Marquardt al-
gorithm for varying levels of constant variance noise (ν), corresponding to 0%-10%
relative noise. We plot the variation of ε̂∞,0 (left) and κ̂∞ (right) versus the iteration
count.

0 10 20 30 40 50
10−4

10−2

100

102

104

Iterations 

Norm of Gradient

0 10 20 30 40 50
10−1

100

101

102

103

104

Iterations 

Least Squares Function Value

Figure 77: Details of the Levenberg-Marquardt simulations for the two parameter
estimation problem with varying levels (ν) of constant variance noise added to the
simulated data as tabulated in Table 23.
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Table 23: Parameter estimation of ε∞,0 and κ∞ with
the Levenberg-Marquardt algorithm for varying levels of
constant variance noise, corresponding to 0%-10% rela-
tive noise.

% RN Iter ε̂∞,0 κ̂∞ JS ||∇JS||L2

0.1 30 5.4988 1.5708 0.2924 0.0003925
0.3 30 5.4986 1.5714 2.4885 0.0003861
0.5 30 5.4984 1.5721 6.8843 0.0003768
1.0 29 5.4979 1.5738 27.4975 0.0007438
3.0 44 5.4961 1.5806 247.4317 0.0003701
5.0 23 5.4943 1.5873 687.3371 0.0002948
10.0 24 4.9006 -1.0116 2800.2627 0.0006955

Table 24: Parameter estimation of ε∞,0 and κ∞ with
the Levenberg-Marquardt algorithm for varying levels
of constant variance noise, corresponding to 0%-10% of
relative noise.

% RN Iter JS ||∇JS||L2 F G H
0.1 30 0.2924 0.0003925 65 31 64
0.3 30 2.4885 0.0003861 65 31 64
0.5 30 6.8843 0.0003768 65 31 64
1.0 29 27.4975 0.0007438 63 30 62
3.0 44 247.4317 0.0003701 91 45 90
5.0 23 687.3371 0.0002948 49 24 48
10.0 24 2800.2627 0.0006955 52 25 51
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Table 25: Confidence Intervals for the pa-
rameter estimation of ε∞,0 and κ∞ with the
Levenberg-Marquardt algorithm for varying
levels (ν) of constant variance noise corre-
sponding to 0%-10% relative noise.

RN = 0.1%
ε̂∞,0 5.4988 ± 3.3500 × 10−4

κ̂∞ 1.5708 ± 2.0666 × 10−3

RN = 0.3%
ε̂∞,0 5.4986 ± 9.7663 × 10−4

κ̂∞ 1.5714 ± 6.0237 × 10−3

RN = 0.5%
ε̂∞,0 5.4984 ± 1.6231 × 10−3

κ̂∞ 1.5721 ± 1.0009 × 10−2

RN = 1.0%
ε̂∞,0 5.4979 ± 3.2375 × 10−3

κ̂∞ 1.5738 ± 1.9955 × 10−2

RN = 3.0%
ε̂∞,0 5.4961 ± 9.6379 × 10−3

κ̂∞ 1.5806 ± 5.9286 × 10−2

RN = 5.0%
ε̂∞,0 5.4943 ± 1.5943 × 10−2

κ̂∞ 1.587 ± 9.7880 × 10−2
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Figure 78: (Top) The Least Squares Objective Function for different values of ε∞,0

and κ∞ with no noise added to the data. The other five parameters were fixed at
their true values as given in (112). The minimum is located at the point (5.5, 1.65),
with a minimum value of 0. (Bottom) Cross Sections of the Least Squares Objective
function versus κ∞ (right) and versus ε∞,0 (left).
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In Figure 80 we plot the least squares objective function for a range of values of
ε∞,0 and κ∞, again with no added noise. In this case we have not added any noise to
the data. The other five parameters were fixed at values given in (116), and (117),
and τ0 fixed at the value given in (118) that have 10-50% relative error as compared
with their true values in (112).

7.4 Simulation results for the inverse problem: The Nelder-

Mead method

We first attempt to estimate the two parameters ε∞,0 and its pressure coefficient κ∞.
We add constant variance noise to our simulated data. The other five parameters are
fixed at their values given in (116), and (117) with τ0 fixed at the value given in (118).
Figures 81 and 82 plot the details of the Nelder-Mead simulations and the variation of
the two parameters over all iterations. Table 26 displays the final estimates and the
details of the Nelder-Mead algorithm for the two parameter estimation problem with
added constant variance noise. We note that the Nelder-Mead algorithm does not
converge to the optimal values of either of the two parameters. Instead it appears to
converge to a possible local minimum. We demonstrate this fact by plotting the least
squares objective function for the case of added constant variance noise corresponding
to ν = 0.005 (1% RN) in the Figure 83. This figure clearly demonstrates the presence
of many local optima. The reason for the presence of local optima is the fact that
we are changing ε∞,0 inside the Debye media. This changes the speed of propagation
of the electromagnetic pulse inside the Debye media as the maximum wavespeed in
the dispersive dielectric is c0/

√
ε∞,0 [Pet94]. A similar phenomenon was observed in

[BGW03] where the authors constructed a modified least squares objective function
to avoid the occurence of local optima. Another option to solve this problem would be
to resort to using a global optimization method to solve the inverse problem. We note
that the Levenberg-Marquardt method did not seem to converge to a local minima.
However, this may be a fortunate occurence in which case we can always find some
initial guesses that would cause such local optimization algorithms to converge to a
local minimum instead of the global minimum.

In Table 27 we calculate the confidence intervals for the two parameter estimation
problem. We note that the intervals are larger as compared with the results of the
Levenberg-Marquardt method. We also plot the least squares objective function
for different values of ε∞,0 and κ∞ without adding noise to the data. Again we see
the presence of local optima as seen in Figures 84. To see how the interrogating
frequency relates to the presence of local minima we repeat the inverse problem by
lowering the interrogating frequency to 3.0 GHz from 5.0 GHz. In Figure 85 We
observe that in this case the distance between successive minima has increased. Thus
by lowering the interrogating frequency we can push the local minima away from each
other and thius reduce the number of local minima that would occur in an interval of
interest. We next attempt to estimate the three parameters τ0, ε∞,0 and its pressure
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Figure 79: (Top) The Least Squares Objective Function for different values of ε∞,0 and
κ∞ with no noise added to the data. The other five parameters were fixed at values
given in (116), and (117) except for τ0 which was fixed at its true value. The minimum
is located at the point (5.5, 1.617), with a minimum value of 0.0147. (Bottom) Cross
Sections of the Least Squares Objective function versus κ∞ (right) and versus ε∞,0

(left).
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Figure 80: (Top) The Least Squares Objective Function for different values of ε∞,0

and κ∞ with no noise added to the data. The other five parameters were fixed at
values given in (116), and (117), and τ0 fixed at the value given in (118) that have
10-50% relative error as compared with their true values. The minimum is located at
the point (5.5, 1.584), with a minimum value of 0.03595. (Bottom) Cross Sections of
the Least Squares Objective function versus κ∞ (right) and versus ε∞,0 (left).
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Figure 81: Details of the Nelder-Mead algorithms for the two parameter estimation
of ε∞,0 and κ∞ for varying levels (ν) of constant variance noise added to the data as
tabulated in Table 26.
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Figure 82: Variation in the estimates ε̂∞,0 (left) and κ̂∞

(right) over all iterations in the Nelder-Mead algorithm
for varying levels (ν) of constant variance noise added
to the data as tabulated in Table 26.

Table 26: Parameter estimation of ε∞,0 and κ∞ for varying levels of constant variance
noise corresponding to 0%-10% relative noise.

% RN Iter ε̂∞,0 κ̂∞ |JS
n+1 − JS

0 | JS ||∇JS||L2 FC
0.1 39 4.5226 1.1231 8.5551 × 10−9 113.3545 0.0551 79
0.3 40 4.5224 1.1232 3.6791 × 10−9 114.9105 0.0440 81
0.5 42 4.5221 1.1233 1.6051 × 10−9 118.6662 0.0209 85
1.0 42 4.5215 1.1236 8.8755 × 10−9 137.6788 0.0610 83
3.0 42 4.5189 1.1246 5.7953 × 10−9 351.2076 0.0154 83
5.0 40 4.5164 1.1257 9.4709 × 10−9 784.7016 0.0439 79
10.0 42 4.5102 1.1284 3.7162 × 10−9 2830.7864 0.0448 86
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Table 27: Confidence Intervals for the parameter estima-
tion of ε∞,0 and κ∞ with the Nelder-Mead algorithm for
varying levels of constant variance noise corresponding
to 0%-10% relative noise.

RN = 0.1%
ε̂∞,0 4.5226 ± 7.6273 × 10−3

κ̂∞ 1.1231 ± 4.7312 × 10−2

RN = 0.3%
ε̂∞,0 4.5224 ± 7.6781 × 10−3

κ̂∞ 1.1232 ± 4.7624 × 10−2

RN = 0.5%
ε̂∞,0 4.5221 ± 7.8008 × 10−3

κ̂∞ 1.1233 ± 4.8383 × 10−2

RN = 1.0%
ε̂∞,0 4.5215 ± 8.3986 × 10−3

κ̂∞ 1.1236 ± 5.2073 × 10−2

RN = 3.0%
ε̂∞,0 4.5189 ± 1.3385 × 10−2

κ̂∞ 1.1246 ± 8.2935 × 10−2

RN = 5.0%
ε̂∞,0 4.5164 ± 1.9965 × 10−2

κ̂∞ 1.1257 ± 1.2361 × 10−1

RN = 10.0%
ε̂∞,0 4.5102 ± 3.7722 × 10−2

κ̂∞ 1.1284 ± 2.3306 × 10−1
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Figure 83: (Top) The Least Squares Objective Function for different values of ε∞,0

and κ∞ for constant variance noise with ν = 0.005 (1% RN)added to the data. The
other five parameters were fixed at values given in (116), and (117). The minimum
is located at the point (5.5, 1.584), with a minimum value of 27.5152. However, we
note the presence of a local minimum at the point (4.51, 1.122) with a minimum least
squares value of 138.0849. (Bottom) Cross sections of the Least Squares Objective
function versus κ∞ (right) and versus ε∞,0 (left).
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Figure 84: (Top) The Least Squares Objective Function for different values of ε∞,0

and κ∞ with no noise added to the data. The other five parameters were fixed at
values given in (116), and (117), and τ0 fixed at the value in (118). The minimum
is located at the point (5.5, 1.58), with a minimum value of 0.036. However, we note
the presence of many local minimum. (Bottom) Cross Sections of the Least Squares
Objective function versus κ∞ (right) and versus ε∞,0 (left).
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Figure 85: (Top) The Least Squares Objective Function for different values of ε∞,0

and κ∞ with no noise added to the data. The other five parameters were fixed at
values given in (116), and (117). However the electromagnetic input source had a
center frequency of 3.0 GHz as opposed to 5.0 GHz. The minimum is located at the
point (5.5, 1.683), with a minimum value of 6.91. We again note the presence of local
minimum. (Bottom) Cross sections of the Least Squares Objective function versus
κ∞ (right) and versus ε∞,0 (left).
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Table 28: Parameter estimation of εs,0, τ0, and κs for 0%, 1%, 3% and 5% constant
variance noise (test 2).

% RN Iter ε̂∞,0 τ̂0(×10−8) κ̂∞

0.0 135 4.5306 1.3561 1.6470
0.1 120 4.5306 1.3475 1.6559
0.3 124 4.5301 1.3574 1.6479
0.5 122 4.5300 1.3875 1.6267
1.0 126 4.5283 1.4698 1.5787
3.0 118 4.5234 1.7950 1.4231
5.0 125 4.5185 2.4188 1.2588

Table 29: Parameter estimation of εs,0, τ0, and κs for 0%, 1%, 3% and 5% constant
variance noise (test 2).

% RN Iter |JS
n+1 − JS

0 | JS ||∇JS||L2 FC
0.0 135 7.3419 × 10−9 112.2835 0.0281 244
0.1 120 5.7082 × 10−9 112.2681 0.0355 216
0.3 124 6.8767 × 10−9 113.8858 0.0023 226
0.5 122 2.4453 × 10−9 117.7016 0.0287 217
1.0 126 8.1947 × 10−9 136.8571 0.0159 225
3.0 118 9.0603 × 10−9 350.8494 0.0205 206
5.0 125 4.3675 × 10−9 784.6225 0.0296 231

coefficient κ∞ again by adding constant variance noise to our data. The other four
parameters are fixed at the values given in (116), and (117). Table 28 displays the
results of the inverse problem. Again we note that the Nelder-Mead converges to a
local minima.Figures 86, 87, 88 and 89 plot the details of the Nelder-Mead algorithm
and the variation of the parameters with the iteration count. In Table 30 we calculate
the confidence intervals for the three parameter estimation problem. Again we observe
that the intervals are larger as compared with the results of the Levenberg-Marquardt
method.

8 Conclusions and future directions

In this report we have presented an electromagnetic interrogation technique for iden-
tifying dielectric parameters of a Debye medium by using acoustic pressure waves
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Table 30: Confidence Intervals for the parameter esti-
mation of ε∞,0, τ0 and κ∞ for constant variance noise
with the Nelder-Mead algorithm.

RN = 0.0%
ε̂∞,0 4.5306 ± 8.2512 × 10−3

τ̂0 (1.3561 ± 5.9711 × 10−1) × 10−8

κ̂∞ 1.6470 ± 1.9556 × 10−1

RN = 0.1%
ε̂∞,0 4.5306 ± 8.2283 × 10−3

τ̂0 (1.3475 ± 5.9323 × 10−1) × 10−8

κ̂∞ 1.6559 ± 1.9523 × 10−1

RN = 0.3%
ε̂∞,0 4.5301 ± 8.2937 × 10−3

τ̂0 (1.3574 ± 6.0170 × 10−1) × 10−8

κ̂∞ 1.6479 ± 1.9682 × 10−1

RN = 0.5%
ε̂∞,0 4.5300 ± 8.4345 × 10−3

τ̂0 (1.3875 ± 6.2477 × 10−1) × 10−8

κ̂∞ 1.6267 ± 2.0063 × 10−1

RN = 1.0%
ε̂∞,0 4.5283 ± 9.0550 × 10−3

τ̂0 (1.4698 ± 7.1148 × 10−8) × 10−8

κ̂∞ 1.5787 ± 2.1736 × 10−1

RN = 3.0%
ε̂∞,0 4.5234 ± 1.4519 × 10−2

τ̂0 (1.7950 ± 1.3804) × 10−8

κ̂∞ 1.4231 ± 3.5550 × 10−1

RN = 5.0%
ε̂∞,0 4.5185 ± 2.1562 × 10−2

τ̂0 (2.4188 ± 2.7552) × 10−8

κ̂∞ 1.2588 ± 5.4570 × 10−1
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Figure 86: Details of the Nelder-Mead algorithms for the three parameter estimation
of ε∞,0, τ0 and κ∞ with varying levels (ν) of constant variance noise added to the
data as tabulated in Table 28, and 29.
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Figure 87: Variation in the estimate ε̂∞,0 over all iterations in the Nelder-Mead algo-
rithm for varying levels (ν) of constant variance noise added to the data as tabulated
in Table 28, and 29.

0 20 40 60 80 100 120 140
1

1.5

2

2.5

3

3.5
x 10−8

Iterations 

τ

τ
0

0
^

* = 3.16× 10−8

Figure 88: Variation in the estimate τ̂0 over all iterations in the Nelder-Mead algo-
rithm for varying levels (ν) of constant variance noise added to the data as tabulated
in Table 28, and 29.
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Figure 89: Variation in the estimate κ̂∞ over all iterations in the Nelder-Mead algo-
rithm for varying levels (ν) of constant variance noise added to the data as tabulated
in Table 28, and 29.

as virtual reflectors for the incident electromagnetic pulse. We considered the two
dimensional TE mode of Maxwell’s equations which incorporates the pressure de-
pendence in the Debye medium via a model for orientational polarization. As a first
approximation we assumed that the dielectric parameters εs,0, ε∞,0 and the relaxation
τ0 are affine functions of pressure. We have used the finite difference time domain
scheme to discretize our electromagnetic/acoustic model and to compute simulated
data to be used in a parameter identification problem.

We formulated an inverse problem for the identification of the material parameters
as well as the coefficients of pressure in the Debye model, based on the method of
least squares. We used two different methods to solve the inverse problem; namely
Levenberg-Marquardt and Nelder-Mead. The inverse problem indicates that the co-
efficients that can be identified depend on the order of magnitude of ωτ0. Thus in
the first test problem we were able to identify εs,0 and the corresponding pressure
coefficient κs, and in the second test problem we were able to identify ε∞,0 and the
corresponding pressure coefficient κ∞. It is not possible to accurately identify all
the seven parameters that describe the Debye medium coupled with the model for
pressure dependence in either of the examples that we have considered in this report.

We have also computed confidence intervals for all the estimates obtained using
statistical error analysis based on the assumption of constant variance noise. We
showed that the intervals become larger as the level of added noise is increased.
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There are many questions that still need to be answered. We have used a simple
linear model for the pressure term in Maxwell’s equations. Also we have assumed that
the effect of the electromagnetic field on the acoustic wave is negligible. A dynamic
coupled model of the electromagnetic/acoustic interaction is the topic of a future
paper. We will also consider the dielectric parameters to be nonlinear functions of
pressure in a future paper to determine if the dynamics of the problem change with
the dependence of the dielectric parameters on the pressure.
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